【題目】如圖,在中,,斜邊可以通過以直線為軸旋轉(zhuǎn)得到,且二面角是直二面角,動點(diǎn)在斜邊上.

(1)當(dāng)DAB的中點(diǎn)時,求異面直線AOCD所成角的正切值;

(2)求CD與平面AOB所成角的正切值的最大值.

【答案】(1); (2).

【解析】

(1)求異面直線所成的角需要將兩條異面直線平移交于一點(diǎn),的中點(diǎn),故平移時很容易應(yīng)聯(lián)想中位線,,垂足為連接,則,是異面直線所成的角利用解三角形的有關(guān)知識夾角問題即可;(2)本題的設(shè)問是遞進(jìn)式的求直線與平面所成的角,與平面所成角,

,當(dāng)最小時,最大.

(1)作DE⊥OB,垂足為E,連接CE,所以DE∥AO,

∴∠CDE(或其補(bǔ)角)是異面直線AO與CD所成的角.

中,,

,所以,

∴在中,

所以異面直線AO與CD所成角的余弦值大小為.

(2)由(1)知,平面

與平面所成的角,并且

當(dāng)最小時,最大,這時,,垂足為

所以,∴

所以與平面所成的角的最大時的正切值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在心理學(xué)研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結(jié)果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者A1 , A2 , A3 , A4 , A5 , A6和4名女志愿者B1 , B2 , B3 , B4 , 從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.(12分)
(Ⅰ)求接受甲種心理暗示的志愿者中包含A1但不包含B1的概率.
(Ⅱ)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點(diǎn)()處的切線方程;

(2)證明:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)數(shù)z1=(a2-4sin2θ)+(1+2cos θ)i,aR,θ(0,π),z2在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第一象限,且z=-3+4i.

(1)z2|z2|.

(2)z1z2,求θa2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解籃球愛好者小張的投籃命中率與打籃球時間之間的關(guān)系,下表記錄了小張某月1號到5號每天打籃球時間(單位:小時)與當(dāng)天投籃命中率之間的關(guān)系:

時間

1

2

3

4

5

命中率

0.4

0.5

0.6

0.6

0.4


(1)求小張這天的平均投籃命中率;

(2)利用所給數(shù)據(jù)求小張每天打籃球時間(單位:小時)與當(dāng)天投籃命中率之間的線性回歸方程;(參考公式:

(3)用線性回歸分析的方法,預(yù)測小李該月號打小時籃球的投籃命中率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為,離心率

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若分別是橢圓的左、右焦點(diǎn),過的直線與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年10月18日至24日,中國共產(chǎn)黨第十九次全國人民代表大會在北京順利召開.大會期間,北京某高中舉辦了一次“喜迎十九大”的讀書讀報知識競賽,參賽選手為從高一年級和高二年級隨機(jī)抽取的各100名學(xué)生.圖1和圖2分別是高一年級和高二年級參賽選手成績的頻率分布直方圖.

(1)分別計算參加這次知識競賽的兩個年級學(xué)生的平均成績;

(2)若稱成績在68分以上的學(xué)生知識淵博,試以上述數(shù)據(jù)估計該高一、高二兩個年級學(xué)生的知識淵博率;

(3)完成下面2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.010的前提下,認(rèn)為高一、高二兩個年級學(xué)生這次讀書讀報知識競賽的成績有差異.

分類

成績低于60分人數(shù)

成績不低于60分人數(shù)

總計

高一年級

高二年級

總計

附:

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

K2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中社團(tuán)進(jìn)行社會實踐,對歲的人群隨機(jī)抽取n人進(jìn)行了一次是否開通“微博”的調(diào)查,若開通“微博”的稱為“時尚族”,否則稱為“非時尚族”,通過調(diào)查分別得到如圖所示統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

完成以下問題:

(Ⅰ)補(bǔ)全頻率分布直方圖并求的值;

(Ⅱ)從歲年齡段的“時尚族”中采用分層抽樣法抽取人參加網(wǎng)絡(luò)時尚達(dá)人大賽,其中選取人作為領(lǐng)隊,記選取的名領(lǐng)隊中年齡在歲的人數(shù)為,求的分布列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列題目的證法,再解決后面的問題.

已知a1,a2∈R,且a1+a2=1,求證:a+a.

證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2,則f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.

因為對一切x∈R,恒有f(x)≥0,

所以Δ=4-8(a+a)≤0,從而得a+a.

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請由上述結(jié)論寫出關(guān)于a1,a2,…,an的推廣式;

(2)參考上述證法,請對你推廣的結(jié)論加以證明.

查看答案和解析>>

同步練習(xí)冊答案