【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)若,求函數(shù)的單調(diào)區(qū)間.
【答案】(1);(2)在單調(diào)遞減,在單調(diào)遞增.
【解析】試題分析:(1)求導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義曲線在點(diǎn)處的切線斜率 的值,根據(jù)點(diǎn)斜式可得切線方程;(2)先求出函數(shù)的導(dǎo)數(shù),根據(jù)解關(guān)于 導(dǎo)函數(shù)的不等式可得增區(qū)間, 解關(guān)于的不等式,可求出函數(shù)的單調(diào)減區(qū)間.
試題解析:(1)當(dāng)時(shí),函數(shù), ,
∴,
∴曲線在點(diǎn)處的切線方程為.
(2).
令,解得;
令,解得;
∴在單調(diào)遞減,在單調(diào)遞增.
【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線切線以及及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.求曲線切線方程的一般步驟是:(1)求出在處的導(dǎo)數(shù),即在點(diǎn) 出的切線斜率(當(dāng)曲線在處的切線與軸平行時(shí),在 處導(dǎo)數(shù)不存在,切線方程為);(2)由點(diǎn)斜式求得切線方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且點(diǎn)到直線的距離為, 與的公共弦長(zhǎng)為.
(1)求橢圓的方程及點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)的直線與交于兩點(diǎn),與交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若函數(shù)為定義域上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),函數(shù)的兩個(gè)極值點(diǎn)為, ,且.證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量之間的相關(guān)關(guān)系,并求得回歸直線方程和相關(guān)系數(shù),分別得到以下四個(gè)結(jié)論:
① ②
③ ④
其中,一定不正確的結(jié)論序號(hào)是( )
A. ②③ B. ①④ C. ①②③ D. ②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱(chēng)為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說(shuō)明理由;
(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市英才中學(xué)的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)中學(xué)生的良好“光盤(pán)習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120份問(wèn)卷,對(duì)收回的120份有效問(wèn)卷進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:
做不到光盤(pán) | 能做到光盤(pán) | 合計(jì) | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合計(jì) | 75 | 25 | 100 |
(1)現(xiàn)已按是否能做到光盤(pán)分層從45份女生問(wèn)卷中抽取9份問(wèn)卷,若從這9份問(wèn)卷中隨機(jī)抽取4份,并記其中能做到光盤(pán)的問(wèn)卷的份數(shù)為,試求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(2)如果認(rèn)為良好“光盤(pán)習(xí)慣”與性別有關(guān)犯錯(cuò)誤的概率不超過(guò),那么根據(jù)臨界值表最精確的的值應(yīng)為多少?請(qǐng)說(shuō)明理由.
附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量,其中.
獨(dú)立性檢驗(yàn)臨界表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了估計(jì)某自然保護(hù)區(qū)中天鵝的數(shù)量,可以使用以下方法:先從該保護(hù)區(qū)中捕出一定數(shù)量的天鵝,例如200只,給每只天鵝做上不影響其存活的記號(hào),然后放回保護(hù)區(qū),經(jīng)過(guò)適當(dāng)?shù)臅r(shí)間,讓其和保護(hù)區(qū)中其余的天鵝充分混合,再?gòu)谋Wo(hù)區(qū)中捕出一定數(shù)量的天鵝,例如150只,查看其中有記號(hào)的天鵝,設(shè)有20只,試根據(jù)上述數(shù)據(jù),估計(jì)該自然保護(hù)區(qū)中天鵝的數(shù)量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓: 的離心率為, 為橢圓的右焦點(diǎn), , .
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為原點(diǎn), 為橢圓上一點(diǎn), 的中點(diǎn)為,直線與直線交于點(diǎn),過(guò)作,交直線于點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過(guò)點(diǎn)的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點(diǎn).
(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com