9.函數(shù)f(x)=2sinx+3cosx的極大值為$\sqrt{13}$.

分析 利用兩角和與差的三角函數(shù)化簡函數(shù)的表達(dá)式為一個(gè)角的一個(gè)三角函數(shù)的形式,然后求解即可.

解答 解:函數(shù)f(x)=2sinx+3cosx
=$\sqrt{13}$sin(x+θ),其中tanθ=$\frac{3}{2}$.
$\sqrt{13}$sin(x+θ)$≤\sqrt{13}$.
故答案為:$\sqrt{13}$.

點(diǎn)評 本題考查三角函數(shù)的最值的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.西部某縣教委將7位大學(xué)生志愿者(4男3女)分成兩組,分配到兩所小學(xué)支教,若要求女生不能單獨(dú)成組,且每組最多5人,則不同的分配方案共有( 。
A.36種B.68種C.104種D.110種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=ax+1-2的圖象恒過點(diǎn)A(其中實(shí)數(shù)a滿足a>0且a≠1),若點(diǎn)A在直線mx+ny+2=0上,且mn>0,則$\frac{1}{m}$+$\frac{1}{n}$的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知A∈α,p∉α,$\overrightarrow{PA}$=(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,$\sqrt{2}$),平面α的一個(gè)法向量$\overrightarrow{n}$=(0,-$\frac{1}{2}$,-$\sqrt{2}}$),則直線PA與平面α所成的角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某學(xué)校1800名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,抽取其中50個(gè)樣本,將測試結(jié)果按如下方式分成五組:第一組[13,14),第二組[14,15),第五組[17,18],圖是按上述分組方法得到的頻率分布直方圖.
(1)若成績小于15秒認(rèn)為良好,求該樣本在這次百米測試中成績良好的人數(shù);
(2)請估計(jì)學(xué)校1800名學(xué)生中,成績屬于第四組的人數(shù);
(3)請根據(jù)頻率分布直方圖,求樣本數(shù)據(jù)的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.化簡與求值:
(1)$\frac{cos(2π-α)sin(π+α)}{{sin(\frac{π}{2}+α)tan(3π-α)}}$.
(2)$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=logax+1(a>0且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線 $\frac{x}{m}$+$\frac{y}{n}$-4=0(m>0,n>0)上,則$\frac{1}{m}$+$\frac{1}{n}$=4;m+n的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.“a=4”是“直線(2+a)x+3ay+1=0與直線(a-2)x+ay-3=0相互平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在正六棱柱中,不同在任何側(cè)面而且不同在任何底面的兩頂點(diǎn)的連線稱為對角線,那么一個(gè)正六棱柱對角線的條數(shù)共有( 。
A.24B.18C.20D.32

查看答案和解析>>

同步練習(xí)冊答案