函數(shù)y=(
1
2
|x|+2的值域是
 
考點(diǎn):指數(shù)型復(fù)合函數(shù)的性質(zhì)及應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)t=|x|+2,根據(jù)指數(shù)函數(shù)的單調(diào)性即可求出函數(shù)的值域.
解答: 解:設(shè)t=|x|+2,則t≥2,
∵y=(
1
2
t單調(diào)遞減,
∴y=(
1
2
t∈(0,
1
4
]
,
即函數(shù)的值域?yàn)椋?,
1
4
]
,
故答案為:(0,
1
4
]
點(diǎn)評(píng):本題主要考查函數(shù)值域的計(jì)算,利用換元法結(jié)合指數(shù)函數(shù)的單調(diào)性是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知函數(shù)f(x)=lnx-ex+a
(I)若x=1是,f(x)的極值點(diǎn),討論f(x)的單調(diào)性
(Ⅱ)當(dāng)a≥-2時(shí),證明:f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下四個(gè)命題:
①將一枚硬幣拋擲兩次,設(shè)事件A:“兩次都出現(xiàn)正面”,事件B:“兩次都出現(xiàn)反面”,則事件A與B是對(duì)立事件;
②在命題①中,事件A與B是互斥事件;
③在10件產(chǎn)品中有3件是次品,從中任取3件.事件A:“所取3件中最多有2件次品”,事件B:“所取3件中至少有2件次品”,則事件A與B是互斥事件;
④若事件A、B滿足P(A)+P(B)=1,則A、B是對(duì)立事件.
則以上命題中假命題是
 
(寫(xiě)出所有假命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}是遞增數(shù)列,Sn是{an}的前n項(xiàng)和.若a1,a3是方程x2-10x+9=0的兩個(gè)根,則S6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=1-i(其中i是虛數(shù)單位),則
2
z
+z2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(
x
+1)=x+
x
,則函數(shù)f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax3+3x2+2,若f(x)在x=1處的切線與直線x+3y+3=0垂直,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于平面α,β,γ和直線a,b,m,n,下列命題中真命題是( 。
A、若a⊥m,a⊥n,m?α,n?α,則a⊥α
B、若α∥β,α∩γ=a,β∩γ=b,則a∥b
C、若a∥b,b?α,則a∥α
D、若a?β,b?β,a∥α,b∥α,則β∥α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1=1,又a2+1,S3-4,a3-1成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列(an+log2an+1)的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案