已知等比數(shù)列{an}是遞增數(shù)列,Sn是{an}的前n項(xiàng)和.若a1,a3是方程x2-10x+9=0的兩個根,則S6=
 
考點(diǎn):等比數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:通過解方程求出等比數(shù)列{an}的首項(xiàng)和第三項(xiàng),然后求出公比,直接利用等比數(shù)列前n項(xiàng)和公式求前6項(xiàng)和.
解答: 解:解方程x2-10x+9=0,得x1=1,x2=9.
∵數(shù)列{an}是遞增數(shù)列,且a1,a3是方程x2-10x+9=0的兩個根,
∴a1=1,a3=9.
設(shè)等比數(shù)列{an}的公比為q,則q2=9,所以q=3.
∴S6=
1-36
1-3
=364.
故答案為:364.
點(diǎn)評:本題考查了等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的前n項(xiàng)和,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,角A,B,C的對邊分別是a,b,c,滿足
b-a
c
=
sinB-sinC
sinB+sinA
,關(guān)于x的不等式x2cosC+4xsinC+6≥0對任意的x∈R恒成立.
(1)求角A的值;
(2)求f(C)=2sinC•cosB的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一段筆直的斜坡AC上豎立兩根高16米的電桿AB,CD,過B,D架設(shè)一條10萬伏高壓電纜線.假設(shè)電纜線BD呈拋物線形狀,現(xiàn)以B為原點(diǎn),AB所在直線為Y軸建立如圖所示的平面直角坐標(biāo)系,經(jīng)觀測發(fā)現(xiàn)視線AD恰與電纜線相切于點(diǎn)D(m,n).
(1)求拋物線BD的方程;
(2)根據(jù)國家有關(guān)規(guī)定,高壓電纜周圍10米內(nèi)為不安全區(qū)域,問當(dāng)有一個身高1.8米的人在這段斜坡上走動時,這根高壓電纜是否會對這個人的安全構(gòu)成威脅?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的定義域?yàn)椋?∞,-1)∪(1,+∞),其圖象上任一點(diǎn)P(x,y)滿足x2-y2=1,則給出以下四個命題:
①函數(shù)y=f(x)一定是偶函數(shù);
②函數(shù)y=f(x)可能是奇函數(shù);
③函數(shù)y=f(x)在(1,+∞)單調(diào)遞增;
④若y=f(x)是偶函數(shù),其值域?yàn)椋?,+∞)
其中正確的序號為
 
.(把所有正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2f(x2)+f(
1
x2
)=x,且x>0,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某高中十佳歌手比賽上某一位選手得分的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(
1
2
|x|+2的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xoy上的區(qū)域由不等式組
x+y-5≤0
y≥x
x≥1
確定,若M(x,y)為區(qū)域D上的動點(diǎn),點(diǎn)A的坐標(biāo)為(2,3),則z=
OA
OM
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個命題中,真命題的個數(shù)是(  )
①“若x+y=0,則x,y互為相反數(shù)”的逆命題;
②“若a>b,則a2>b2”的逆否命題;
③“若x=-3,則x2+x-6=0”的否命題;
④“若a+b是無理數(shù),則a,b定為無理數(shù)”的逆命題.
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案