精英家教網 > 高中數學 > 題目詳情

【題目】設拋物線 的焦點為 ,準線為 ,點 在拋物線 上,已知以點 為圓心, 為半徑的圓 兩點.
(Ⅰ)若 , 的面積為4,求拋物線 的方程;
(Ⅱ)若 三點在同一條直線 上,直線 平行,且 與拋物線 只有一個公共點,求直線 的方程.

【答案】解:(Ⅰ)由對稱性知, 是等腰三角形.
,點 到準線的距離為 ,設準線與 軸交于點
,
.
∴拋物線方程為 ;
(Ⅱ)由對稱性不妨設 ,則 .
∵點 關于點 對稱,
點的坐標為 .
點在準線上,
.
.
點坐標為 .
.
又∵直線 與直線 平行,
.
由已知直線 與拋物線相切,設切點為 ,
.
.
∴切點 .
∴直線 的方程為 ,即 .
由對稱性可知,直線 有兩條,分別為 ,
【解析】本題考查拋物線與直線的位置關系的綜合應用,具體涉及到拋物線的簡單性質、直線方程的應用,解題時要認真審題,仔細解答,注意合理地進行等價轉化.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若函數f(x)= 是奇函數,則使f(x)>3成立的x的取值范圍為( )
A.(-∞,-1)
B.(-1,0)
C.(0,1)
D.(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某分公司經銷某種品牌產品,每件產品的成本為30元,并且每件產品須向總公司繳納a元(a為常數,2≤a≤5)的管理費,根據多年的統(tǒng)計經驗,預計當每件產品的售價為x元時,產品一年的銷售量為 (e為自然對數的底數)萬件,已知每件產品的售價為40元時,該產品一年的銷售量為500萬件.經物價部門核定每件產品的售價x最低不低于35元,最高不超過41元.
(1)求分公司經營該產品一年的利潤L(x)萬元與每件產品的售價x元的函數關系式;
(2)當每件產品的售價為多少元時,該產品一年的利潤L(x)最大,并求出L(x)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)=1+ +sin x在區(qū)間[-k,k](k>0)上的值域為[m,n],則m+n的值是( )
A.0
B.1
C.2
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,已知曲線 的參數方程為 為參數),點 是曲線 上的一動點,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線 的方程為 .
(Ⅰ)求線段 的中點 的軌跡的極坐標方程;
(Ⅱ)求曲線 上的點到直線 的距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某校高中男生中隨機選取100名學生,將他們的體重(單位: )數據繪制成頻率分布直方圖,如圖所示.

(1)估計該校的100名同學的平均體重(同一組數據以該組區(qū)間的中點值作代表);
(2)若要從體重在 , 三組內的男生中,用分層抽樣的方法選取6人組成一個活動隊,再從這6人中選2人當正副隊長,求這2人中至少有1人體重在 內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列判斷錯誤的是( )
A.若隨機變量 服從正態(tài)分布 ,則
B.若 組數據 的散點都在 上,則相關系數
C.若隨機變量 服從二項分布: , 則 ;
D. 的充分不必要條件;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在 中, , . 分別是邊 上的點,且 .現將 沿直線 折起,形成四棱錐 ,則此四棱錐的體積的最大值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 ,不等式 成立.
(Ⅰ)求實數 的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,對于實數 滿足 且不等式 恒成立,求 的最小值.

查看答案和解析>>

同步練習冊答案