分析 當(dāng)x>0時,將f(x)變形,利用基本不等式可求f(x)的最小值,對函數(shù)g(x)求導(dǎo),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而可求g(x)的最大值,由$\frac{g({x}_{1})}{k}$≤$\frac{f({x}_{2})}{k+1}$恒成立且k>0,則 $\frac{{g(x)}_{max}}{k}$≤$\frac{{f(x)}_{min}}{k+1}$,可求k的范圍.
解答 解:∵當(dāng)x>0時,f(x)=e2x+$\frac{1}{x}$≥2 $\sqrt{{e}^{2}x•\frac{1}{x}}$=2e,
∴x1∈(0,+∞)時,函數(shù)f(x1)有最小值2e
∵g′(x)=$\frac{{e}^{2}x(2-x)}{{e}^{x}}$,當(dāng)x<2時,g′(x)>0,則函數(shù)g(x)在(0,2)上單調(diào)遞增
當(dāng)x>2時,g′(x)<0,則函數(shù)在(2,+∞)上單調(diào)遞減
∴x=2時,函數(shù)g(x)有最大值g(2)=4,
則有x1、x2∈(0,+∞),f(x1)min=2e>g(x2)max=4,
∵$\frac{g({x}_{1})}{k}$≤$\frac{f({x}_{2})}{k+1}$恒成立且k>0,
∴$\frac{4}{k}$≤$\frac{2e}{k+1}$,∴k≥$\frac{4}{2e-4}$,
故答案為:k≥$\frac{4}{2e-4}$
點評 本題主要考查了利用基本不等式求解函數(shù)的最值,導(dǎo)數(shù)在函數(shù)的單調(diào)性,最值求解中的應(yīng)用是解答本題的另一重要方法,函數(shù)的恒成立問題的轉(zhuǎn)化,本題具有一定的難度.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,-1) | B. | (-1,0) | C. | (-2,-1] | D. | [-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | -2 | D. | ±2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com