精英家教網 > 高中數學 > 題目詳情
已知p:
1
x-2
≥1,q:a-1<x<a+1,若p是q的充分不必要條件,則實數a的取值范圍為(  )
A、(-∞,3]
B、[2,3]
C、(2,3]
D、(2,3)
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:求出命題的等價條件,利用充分條件和必要條件的定義建立條件關系即可得到結論.
解答: 解:由
1
x-2
≥1,得0<x-2≤1,解得2<x≤3,即p:2<x≤3,
若p是q的充分不必要條件,
a-1≤2
a+1>3
,即
a≤3
a>2
,
解得2<a≤3,
故選:C.
點評:本題主要考查充分條件和必要條件的應用,根據不等式的性質求出命題的等價條件是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在-360°~720°之間,與角175°終邊相同的角有
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f1(x)=sin x+cos x,fn+1(x)是fn(x)的導函數,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,則f2014(x)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=2x+log3x-1的零點在下列區(qū)間內的是( 。
A、(0,
1
4
B、(
1
4
1
2
C、(
1
2
3
4
D、(
3
4
,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知θ∈[π,
4
],則
1-sin2θ
-
1+sin2θ
可化簡為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知sin(
π
4
-x)=
3
5
,則sinx的值是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=
2x,x>0
-(x-2),x≤0
,則f[f(-3)]=( 。
A、1B、10C、-12D、-3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A(-1,2),B(2,4),C(x,3),且A、B、C三點共線,則x=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且acosB-bcosA=
1
2
c.
(Ⅰ)求證tanA=3tanB;
(Ⅱ)若B=45°,b=
5
,求△ABC的面積.

查看答案和解析>>

同步練習冊答案