【題目】設函數(shù)

1)當時,求曲線處的切線方程;

2)當時,求函數(shù)的單調區(qū)間;

3)在(2)的條件下,設函數(shù),若對于,,使成立,求實數(shù)的取值范圍.

【答案】1y=﹣2.(2)單調遞增區(qū)間為(1,2);單調遞減區(qū)間為(0,1)和(2+∞).(3

【解析】

1)將a2代入,對其求導,可得的值,可得fx)在x1處的切線方程;;

2)將代入,對其求導,由導數(shù)性質可得函數(shù)fx)的單詞區(qū)間;

3)由(2)可得的最小值為,又,

,三種情況討論,結合對,,使成立,可得b的取值范圍.

解:(1)將a2代入函數(shù),可得

可得:,,,

故曲線fx)在x1處的切線方程為y=﹣2

(2)

可得1x2;

可得0x1x2;

因此fx)的單調遞增區(qū)間為(12);

單調遞減區(qū)間為(0,1)和(2+∞).

3fx)在(1,2)上單調遞增,因此fx)的最小值為f1

gx

①當b0時,gx)在[01]上單調遞增,則矛盾.

②當0≤b≤1時,,得

③當b1時,,解得b1

因此,綜上所述b的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的零點;

(2)當,求函數(shù)上的最大值;

(3)對于給定的正數(shù)a,有一個最大的正數(shù),使時,都有,試求出這個正數(shù),并求它的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),曲線在點處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐的底面ABCD是菱形,平面ABCD,,F,G分別為PDBC中點,.

(Ⅰ)求證:平面PAB;

(Ⅱ)求三棱錐的體積;

(Ⅲ)求證:OPAB不垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲地到乙地要經(jīng)過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.

(Ⅰ)設表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和數(shù)學期望;

(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)經(jīng)過短短幾年的發(fā)展,員工近百人.不知何因,人員雖然多了,但員工的實際工作效率還不如從前.月初,企業(yè)領導按員工年齡從企業(yè)抽選位員工交流,并將被抽取的員工按年齡(單位:歲)分為四組:第一組,第二組,第三組,第四組,且得到如下頻率分布直方圖:

1)求實數(shù)的值;

2)若用簡單隨機抽樣方法從第二組、第三組中再隨機抽取人作進一步交流,求“被抽取得人均來自第二組”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”,三國時期吳國的數(shù)學家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形.現(xiàn)隨機地向大正方形內部區(qū)域投擲飛鏢,若飛鏢落在小正方形區(qū)域的概率是,則直角三角形的兩條直角邊長的比是(長邊:短邊)(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱柱中,底面為平行四邊形,平面,,

1)證明:平面平面;

2)若二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中, ,動點滿足:以為直徑的圓與軸相切.

(1)求點的軌跡方程;

(2)設點的軌跡為曲線,直線過點且與交于兩點,當的面積之和取得最小值時,求直線的方程.

查看答案和解析>>

同步練習冊答案