14.對于實數(shù)a,b,c,下列結(jié)論中正確的是(  )
A.若a>b,則ac2>bc2B.若a>b>0,則$\frac{1}{a}$>$\frac{1}$
C.若a<b,則a2<b2D.若ab>0,a>b則$\frac{1}{a}$<$\frac{1}$

分析 利用不等式的基本性質(zhì)即可判斷出正誤.

解答 解:對于A.取c=0時,不正確;
對于B.∵a>b>0,則$\frac{1}{a}$<$\frac{1}$,因此不正確;
對于C.取a=-2,b=1時,不正確;
對于D.a(chǎn)b>0,a>b,則$\frac{a}{ab}>\frac{ab}$,即$\frac{1}{a}$<$\frac{1}$,正確.
故選:D.

點評 本題考查了不等式的基本性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,角A、B、C所對的邊分別為a、b、c,若b=1,$\frac{1}{2}sinB=cos({B+C})sinC$,則當角B取最大值時,△ABC的周長為( 。
A.3B.$2+\sqrt{2}$C.$2+\sqrt{3}$D.$3+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{(1-i)^{3}}{(1+i)^{2}}$在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.與橢圓$C:\frac{x^2}{9}+\frac{y^2}{5}=1$共焦點且過點$P(3,\sqrt{2})$的雙曲線方程為(  )
A.${x^2}-\frac{y^2}{3}=1$B.$\frac{x^2}{3}-{y^2}=1$C.$\frac{x^2}{2}-\frac{y^2}{6}=1$D.$\frac{x^2}{6}-\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,求證:
(1)PC∥平面EBD;
(2)BC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在扇形AOB中,∠AOB=2,且弦AB=2,則扇形AOB的面積為(  )
A.$\frac{2}{sin2}$B.$\frac{1}{si{n}^{2}1}$C.$\frac{1}{2si{n}^{2}2}$D.2sin1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知m,n∈R,則“mn<0”是“拋物線mx2+ny=0的焦點在y軸正半軸上”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,已知sinA:sinB:sinC=3:2:4,那么cosC=( 。
A.-$\frac{1}{4}$B.-$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.關(guān)于x的不等式x2-ax+b<0的解集為{x|2<x<3}.
(Ⅰ)求a+b;
(Ⅱ)若不等式-x2+bx+c>0的解集為空集,求c的取值范圍.

查看答案和解析>>

同步練習冊答案