4.關(guān)于x的不等式x2-ax+b<0的解集為{x|2<x<3}.
(Ⅰ)求a+b;
(Ⅱ)若不等式-x2+bx+c>0的解集為空集,求c的取值范圍.

分析 (Ⅰ)根據(jù)一元二次不等式與對應(yīng)方程的關(guān)系,利用根與系數(shù)的關(guān)系求出a、b的值,再求和;
(Ⅱ)把b=6代入不等式-x2+bx+c>0,由判別式△≤0求出c的取值范圍.

解答 解:(Ⅰ)由題意得:方程x2-ax+b=0的兩根為2和3,…(2分)
所以$\left\{\begin{array}{l}{2+3=a}\\{2×3=b}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=5}\\{b=6}\end{array}\right.$,…(4分)
所以a+b=11;   …(5分)
(Ⅱ)由(Ⅰ)知b=6,
因為不等式-x2+bx+c>0的解集為空集,
所以△=62+4c≤0,…(8分)
解得c≤-9,
所以c的取值范圍為(-∞,-9].         …(10分)

點評 本題主要考查了一元二次不等式的基本解法,也考查了推理論證能力、運算求解能力與數(shù)形結(jié)合的數(shù)學(xué)思想方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對于實數(shù)a,b,c,下列結(jié)論中正確的是( 。
A.若a>b,則ac2>bc2B.若a>b>0,則$\frac{1}{a}$>$\frac{1}$
C.若a<b,則a2<b2D.若ab>0,a>b則$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在直線l1:ax-y-a+2=0(a∈R),過原點O的直線l2與l1垂直,垂足為M,則|OM|的最大值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.兩直線3x+y-3=0與3x+my+$\frac{1}{2}$=0平行,則它們之間的距離是( 。
A.4B.$\frac{2}{13}$$\sqrt{13}$C.$\frac{5}{26}$$\sqrt{13}$D.$\frac{7}{20}$$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若關(guān)于x的一元二次方程x2+ax-2=0有兩個不相等的實根x1,x2,且x1<-1,x2>1,則實數(shù)a的取值范圍是( 。
A.a<-1B.a>1C.-1<a<1D.a>2$\sqrt{2}$或a<-2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等差數(shù)列{an}的首項為a,公差為1,數(shù)列{bn}滿足bn=$\frac{{a}_{n}}{{a}_{n}+1}$.若對任意n∈N*,bn≤b6,則實數(shù)a的取值范圍是( 。
A.(-8,-6)B.(-7,-6)C.(-6,-5)D.(6,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)$f(x)=\left\{\begin{array}{l}3{e^{x-1}},x<2\\{log_7}(8x+1),x≥2\end{array}\right.$,則f[f(ln2+1)]=(  )
A.2B.7C.log713D.log717

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知角α的終邊經(jīng)過點P(3,-1),且$tan(β+\frac{π}{4})=3$.
(Ⅰ)求sin2α,cos2α的值;
(Ⅱ)求tan(2α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.cos585°的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案