分析 確定f(x)在(0,+∞)上單調(diào)遞增,f(2)=0,f(x)<0,可得f(x)<f(2),即可得出結(jié)論.
解答 解:∵當(dāng)0<x1<x2時有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0,
∴f(x)在(0,+∞)上單調(diào)遞增,
又f(2)=0,f(x)<0,
∴f(x)<f(2),
∵f(x)在(0,+∞)上單調(diào)遞增,
∴不等式f(x)<0的解集是(0,2).
故答案為:(0,2).
點評 本題考查函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)性求解不等式問題,考查學(xué)生的計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m>$\frac{2\sqrt{3}}{3}$或m<-$\frac{2\sqrt{3}}{3}$ | B. | m<-$\frac{2\sqrt{3}}{3}$或m>0 | C. | m>$\frac{2\sqrt{3}}{3}$ | D. | m<-$\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com