14.若a,b,c∈R且c-a=2,則“2a+b>1”是“a,b,c這3個(gè)數(shù)的平均數(shù)大于1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 利用平均數(shù)的定義、不等式的性質(zhì)、簡(jiǎn)易邏輯的判定方法即可得出結(jié)論.

解答 解:若a,b,c這3個(gè)數(shù)的平均數(shù)大于1,則$\frac{a+b+c}{3}>1$,
a+b+a+2>3,
∴2a+b>1,反之,亦成立,
故選:C.

點(diǎn)評(píng) 本題考查了平均數(shù)的定義、不等式的性質(zhì)、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知數(shù)列{an}滿足a1=3且an+1=4an+3(n∈N+),則數(shù)列{an}的通項(xiàng)公式為an=4n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,某人為了測(cè)量某建筑物兩側(cè)A.B間的距離(在A,B處相互看不到對(duì)方),選定了一個(gè)可看到A、B兩點(diǎn)的C點(diǎn)進(jìn)行測(cè)量,你認(rèn)為測(cè)量時(shí)應(yīng)測(cè)量的數(shù)據(jù)是a,b,γ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在下列四個(gè)命題中:
①函數(shù)$y=tan(x+\frac{π}{4})$的定義域是$\left\{{\left.x\right|x≠\frac{π}{4}+kπ,k∈z}\right\}$;
②已知$sinα=\frac{1}{2}$,且α∈[0,2π],則α的取值集合是$\left\{{\frac{π}{6}}\right\}$;
③函數(shù)$y=sin(2x+\frac{π}{3})+sin(2x-\frac{π}{3})$的最小正周期是π;
④函數(shù)y=cos2x+sinx的最小值為-1.
把你認(rèn)為正確的命題的序號(hào)都填在橫線上①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.由直線y=x+1上一點(diǎn)向圓(x-3)2+y2=1 引切線,則該點(diǎn)到切點(diǎn)的最小距離為(  )
A.1B.$\sqrt{7}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知α,β均為銳角,且$cosα=\frac{{2\sqrt{5}}}{5},cosβ=\frac{{\sqrt{10}}}{10}$,則α-β等于( 。
A.$\frac{π}{4}$B.$-\frac{π}{4}$C.$\frac{π}{2}$D.$-\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知以點(diǎn)C(t,$\frac{2}{t}$)(t>0)為圓心的圓經(jīng)過(guò)原點(diǎn)O,且與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(Ⅰ)求證:△AOB的面積為定值.
(Ⅱ)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.
(Ⅲ)在(Ⅱ)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,$B=\frac{π}{3},AC=\sqrt{3}$,則△ABC周長(zhǎng)的取值范圍是(  )
A.$(2,3\sqrt{3}]$B.$(2\sqrt{3},3\sqrt{3}]$C.$[2,3\sqrt{3}]$D.$(2\sqrt{3},3+\sqrt{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)在平面上有兩個(gè)向量$\overrightarrow a$=(cos α,sin α)(0°≤α<180°),$\overrightarrow b$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).
(1)求證:向量$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$垂直;
(2)當(dāng)向量$\sqrt{3}\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\sqrt{3}\overrightarrow b$的模相等時(shí),求α的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案