【題目】已知定義在上的可導函數(shù)的導函數(shù)為,滿足,且為偶函數(shù),,則不等式的解集為( )

A. B. C. D.

【答案】D

【解析】分析:令g(x)=,利用導數(shù)和已知即可得出其單調(diào)性.再利用函數(shù)的對稱性和已知可得g(0)=1,從而求得不等式f(x)>ex的解集.

詳解:設(shè)g(x)=,則

<f(x),∴.∴函數(shù)g(x)是R上的減函數(shù),

函數(shù)f(x+3)是偶函數(shù),

函數(shù)f(﹣x+3)=f(x+3),∴函數(shù)關(guān)于x=3對稱,∴f(0)=f(6)=1,

原不等式等價為g(x)>1,∴不等式f(x)<ex等價g(x)1,即g(x)>g(0),

g(x)在R上單調(diào)遞減,∴x<0.

不等式f(x)>ex的解集為(﹣∞,0).故答案為:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=ax2-4ax+1+ba0)的定義域為[23],值域為[1,4];設(shè)gx=

1)求a,b的值;

2)若不等式g2x-k2x≥0在x[12]上恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題是假命題的是(
A.?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù)
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.向量 =(﹣2,1), =(﹣3,0),則 方向上的投影為2
D.“|x|≤1”是“x<1”的既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:“方程x2﹣ax+a+3=0有解”,q:“ ﹣a≥0在[0,+∞)上恒成立”,若p或q為真命題,p且q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有8名馬拉松比賽志愿者,其中志愿者,,通曉日語,,,通曉俄語,,通曉英語,從中選出通曉日語、俄語和英語的志愿者各1名,組成一個小組.

列出基本事件;

被選中的概率;

不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= +
(1)求函數(shù)f(x)的定義域和值域;
(2)設(shè)F(x)= [f2(x)﹣2]+f(x)(a為實數(shù)),求F(x)在a<0時的最大值g(a);
(3)對(2)中g(shù)(a),若﹣m2+2tm+ ≤g(a)對a<0所有的實數(shù)a及t∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為1的正方形中,分別為邊上的點,且的周長為2.

(1)求線段長度的最小值;

(2)試探究是否為定值,若是,給出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C: + =1(a>b>0)的左、右焦點分別為F1 , F2 , 點P(3,1)在橢圓上,△PF1F2的面積為2
(1)①求橢圓C的標準方程; ②若∠F1QF2= ,求QF1QF2的值.
(2)直線y=x+k與橢圓C相交于A,B兩點,若以AB為直徑的圓經(jīng)過坐標原點,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】兩條平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓相交;若兩平行直線和圓沒有公共點,則稱兩條平行線和圓相離;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓相切.已知直線,,和圓:相切,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案