分析 (Ⅰ)求出f(x)的導(dǎo)數(shù),結(jié)合二次函數(shù)的性質(zhì)求出a的范圍即可;
(Ⅱ)求出f(x2)=x22-2x2+(2x2-2x22)lnx2,令F(t)=t2-2t+(2t-2t2)lnt,($\frac{1}{2}$<t<1),得到F(t)=2(1-2t)lnt,根據(jù)函數(shù)的單調(diào)性求出F(t)>F($\frac{1}{2}$),從而證出結(jié)論;
解答 解:(Ⅰ)f(x)=x2-2x+alnx,f(x)的定義域?yàn)椋?,+∞),
求導(dǎo)數(shù)得:f′(x)=$\frac{{2x}^{2}-2x+a}{x}$,
∵f(x)有兩個極值點(diǎn)x1,x2,f′(x)=0有兩個不同的正根x1,x2,
故2x2-2x+a=0的判別式△=4-8a>0,即a<$\frac{1}{2}$,
且x1+x2=1,x1•x2=$\frac{a}{2}$>0,所以a的取值范圍為(0,$\frac{1}{2}$);
(Ⅱ)由(Ⅰ)得,$\frac{1}{2}$<x2<1且f′(x2)=0,得a=2x2-2x22,
∴f(x2)=x22-2x2+(2x2-2x22)lnx2,
令F(t)=t2-2t+(2t-2t2)lnt,($\frac{1}{2}$<t<1),
則F′(t)=2(1-2t)lnt,
當(dāng)t∈($\frac{1}{2}$,1)時,F(xiàn)′(t)>0,∴F(t)在($\frac{1}{2}$,1)上是增函數(shù)
∴F(t)>F($\frac{1}{2}$)=$\frac{-3-2ln2}{4}$,
∴f(x2)>-$\frac{3+2ln2}{4}$.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,考查不等式的證明,分類討論思想,是一道綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a+c<b+c | B. | a-c>b-c | C. | ac2>bc2 | D. | $\frac{a}{c}$>$\frac{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 極大值 5,無極小值 | B. | 極小值-27,無極大值 | ||
C. | 極大值 5,極小值-27 | D. | 極大值5,極小值-11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | $\frac{1}{2}$ | C. | 8 | D. | -8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com