9.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t為參數(shù),p>0),在極坐標(biāo)系(以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,曲線C2:ρ2-10ρcosθ+16=0,已知斜率為1的直線l與C1相交于A,B兩點(diǎn),與C2相切于點(diǎn)M,且M為線段AB的中點(diǎn).則p的值為$\frac{3\sqrt{2}}{2}$.

分析 參數(shù)方程、極坐標(biāo)方程化為普通方程,利用點(diǎn)差法,求出M的坐標(biāo),代入圓的方程,即可求出p的值.

解答 解:曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t為參數(shù),p>0),普通方程為y2=2px,
曲線C2:ρ2-10ρcosθ+16=0,普通方程為(x-5)2+y2=9,
設(shè)A(x1,y1),B(x2,y2),M(x0,y0),則y12=2px1,y22=2px2,
相減得(y1+y2)(y1-y2)=2p(x1-x2),
當(dāng)l的斜率=1時(shí),利用點(diǎn)差法可得y0=p,
因?yàn)橹本與圓相切,所以$\frac{{y}_{0}}{{x}_{0}-5}$=-1,所以x0=5-p,
∴M(5-p,p)
代入(x-5)2+y2=9,∴p=$\frac{3\sqrt{2}}{2}$,
故答案為$\frac{3\sqrt{2}}{2}$.

點(diǎn)評(píng) 本題考查三種方程的轉(zhuǎn)化,考查點(diǎn)差法的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知m是直線,α,β是兩個(gè)互相垂直的平面,則“m∥α”是“m⊥β”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)a+b=M(a>0,b>0),M為常數(shù),且ab的最大值為2,則M等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.i是虛數(shù)單位,復(fù)數(shù)$\frac{2+{i}^{3}}{1-i}$=( 。
A.$\frac{3+i}{2}$B.$\frac{1+3i}{2}$C.$\frac{1+i}{2}$D.$\frac{3+2i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前9項(xiàng)和為153,且點(diǎn)P(an,an+1)(n∈N+)在直線x-y+3=0上
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)從數(shù)列{an}中,依次去除第2項(xiàng)、第8項(xiàng)、第24項(xiàng)…第n•2n項(xiàng),按原來的順序組成一個(gè)新的數(shù)列{bn},求數(shù)列{bn}的前n項(xiàng)和Sn
(Ⅲ)求證:$\frac{1}{_{1}}+\frac{1}{_{2}}+$…+$\frac{1}{_{n}}$<$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在復(fù)平面內(nèi),復(fù)數(shù)$z=\frac{2i}{1+i}$,則$\overline z$對(duì)應(yīng)的點(diǎn)的坐標(biāo)位于第( 。┫笙蓿
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l過點(diǎn)P(2,0),斜率為$\frac{4}{3}$,直線l和拋物線y2=2x相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,求:
(1)點(diǎn)M的坐標(biāo);
(2)線段AB的長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在直四棱柱ABCD-A1B1C1D1中,AB=4,AA1=2$\sqrt{3}$,底面ABCD為菱形,且∠BAD=60°.
(1)求證:平面ACC1A1⊥平面BDC1;
(2)求三棱錐D1-C1BD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知{an}為各項(xiàng)都為正數(shù)的等比數(shù)列,a1=1,a5=256,Sn為等差數(shù)列{bn}的前n項(xiàng)和,b1=2,5S5=2S8
(1)求{an}和{bn}的通項(xiàng)公式;
(2)設(shè)Tn=a1b1+a2b2+…+anbn,求Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案