4.設(shè)x、y為實數(shù).且xy=3,求x$\sqrt{\frac{y}{x}}$$+y\sqrt{\frac{x}{y}}$的值±2$\sqrt{3}$.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,如圖所示,已知橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的左、右頂點分別為A,B,右焦點為F.設(shè)過點T(t,m)的直線TA,TB與此橢圓分別交于點M(x1,y1),N(x2,y2),其中m>0,y1>0,y2<0.
(Ⅰ)設(shè)動點P滿足:|PF|2-|PB|2=4,求點P的軌跡;
(Ⅱ)設(shè)${x_1}=2,{x_2}=\frac{1}{3}$,求點T的坐標(biāo);
(Ⅲ)設(shè)t=9,求證:直線MN必過x軸上的一定點(其坐標(biāo)與m無關(guān)),并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.①已知函數(shù)y=2sin(3x+2ϕ-$\frac{π}{3}}$)(ϕ>0)是R上的奇函數(shù),求ϕ的最小值.
②已知函數(shù)y=2sin(3x+2ϕ-$\frac{π}{3}}$)(ϕ>0)是R上的偶函數(shù),求ϕ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f[f($\frac{2015}{2}$)]的值是(  )
A.$\frac{2015}{2}$B.1C.0D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列各組函數(shù)中,是相等函數(shù)的是( 。
A.f(x)=x,g(x)=($\sqrt{x}}$)2B.f(x)=x+2,g(x)=$\frac{x^2-4}{x-2}$
C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=$\left\{{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.用根式的形式表示下列各式(a>0)
(1)a${\;}^{\frac{1}{2}}$;(2)a${\;}^{\frac{1}{5}}$;(3)a${\;}^{\frac{3}{4}}$;(4)a${\;}^{\frac{7}{5}}$;(5)a${\;}^{-\frac{2}{3}}$;(6)a${\;}^{-\frac{3}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出下列命題:
①三角形的內(nèi)角必是第一、二象限角,
②第一象限角必是銳角,
③不相等的角終邊一定不相同,
④若β=α+k•720°(k∈Z),則α和β終邊相同,
⑤點P(tanα,cosα)在第三象限,則角α的終邊在第二象限.
其中正確的是( 。
A.①②B.③④C.②⑤D.④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=(x-2)2,f'(x)是函數(shù)f(x)的導(dǎo)函數(shù),設(shè)a1=3,an+1=an-$\frac{{f({a_n})}}{{f'({a_n})}}$.
(I)證明:數(shù)列{an-2}是等比數(shù)列,并求出數(shù)列{an}的通項公式;
(II)令bn=n(an-2),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.空間直角坐標(biāo)系中,點A(-3,4,0)與B(2,-1,6)間的距離是( 。
A.$\sqrt{86}$B.9C.$2\sqrt{21}$D.$2\sqrt{43}$

查看答案和解析>>

同步練習(xí)冊答案