分析 (I)f′(x)=2(x-2),由an+1=an-$\frac{{f({a_n})}}{{f'({a_n})}}$,可得an+1=$\frac{1}{2}$an+1,變形an+1-2=$\frac{1}{2}$(an-2),利用等比數(shù)列的通項公式即可得出.
(Ⅱ)由題意bn=n(an-2)=n•$(\frac{1}{2})^{n-1}$,再利用“錯位相減法”、等比數(shù)列的前n項和公式即可得出.
解答 (I)證明:f′(x)=2(x-2),由an+1=an-$\frac{{f({a_n})}}{{f'({a_n})}}$,
可化為an+1=$\frac{1}{2}$an+1,變形為an+1-2=$\frac{1}{2}$(an-2),
∴{an-2}是以a1-2=1為首項,公比為$\frac{1}{2}$的等比數(shù)列,
∴an-2=(a1-2)•$(\frac{1}{2})^{n-1}$,
∴an=2+$(\frac{1}{2})^{n-1}$;
(II)解:由題意bn=n(an-2)=n•$(\frac{1}{2})^{n-1}$,
則Sn=1+$\frac{2}{2}$+$\frac{3}{{2}^{2}}$+…+$\frac{n}{{2}^{n-1}}$,
$\frac{1}{2}$Sn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+…+$\frac{n-1}{{2}^{n-1}}$+$\frac{n}{{2}^{n}}$,
∴$\frac{1}{2}$Sn=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$=2-$\frac{2+n}{{2}^{n}}$,
∴Sn=4-$\frac{2+n}{{2}^{n-1}}$.
點評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,$\sqrt{2}$) | B. | (1,$\sqrt{5}$) | C. | ($\sqrt{2}$,2) | D. | ($\sqrt{2}$,$\sqrt{5}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com