15.在數(shù)字1、2、3、4中隨機選兩個數(shù)字,則選中的數(shù)字中至少有一個是偶數(shù)的概率為( 。
A.$\frac{11}{12}$B.$\frac{3}{4}$C.$\frac{5}{6}$D.$\frac{5}{8}$

分析 基本事件總數(shù)n=${C}_{4}^{2}$=6,選中的數(shù)字中至少有一個是偶數(shù)的對立事件是選中的兩個數(shù)字都是奇數(shù),由此能求出選中的數(shù)字中至少有一個是偶數(shù)的概率.

解答 解:在數(shù)字1、2、3、4中隨機選兩個數(shù)字,
基本事件總數(shù)n=${C}_{4}^{2}$=6,
選中的數(shù)字中至少有一個是偶數(shù)的對立事件是選中的兩個數(shù)字都是奇數(shù),
∴選中的數(shù)字中至少有一個是偶數(shù)的概率為p=1-$\frac{{C}_{2}^{2}}{{C}_{4}^{2}}$=$\frac{5}{6}$.
故選:C.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意對立事件概率計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ex-a+lnx.
(Ⅰ)若a=1,求證:當(dāng)x>1時,f(x)>2x-1;
(Ⅱ)若存在x0≥e,使f(x0)<2lnx0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知x,y滿足:$\left\{{\begin{array}{l}{x≥0}\\{x+y≤2}\\{x-y≤0}\end{array}}\right.$,若目標函數(shù)z=ax+y取最大值時的最優(yōu)解有無數(shù)多個,則實數(shù)a的值是( 。
A.0B.-1C.±1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知x,y∈R.
(Ⅰ)若x,y滿足$|{x-3y}|<\frac{1}{2}$,$|{x+2y}|<\frac{1}{6}$,求證:$|x|<\frac{3}{10}$;
(Ⅱ)求證:x4+16y4≥2x3y+8xy3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.?dāng)?shù)列{an}和{bn}中,已知${a_1}{a_2}{a_3}…{a_n}={2^{b_n}}(n∈N*)$,且a1=2,b3-b2=3,若數(shù)列{an}為等比數(shù)列.
(Ⅰ)求a3及數(shù)列{bn}的通項公式;
(Ⅱ)令${c_n}=\frac{{2{b_n}}}{n^2}$,是否存在正整數(shù)m,n(m≠n),使c2,cm,cn成等差數(shù)列?若存在,求出m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.?dāng)?shù)列{an}的各項均為正數(shù),a1=2,a2=3,$2{a_{n+1}}^2={a_n}^2+{a_{n+2}}^2(n∈N*)$,則a10=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|x>0},函數(shù)$f(x)=\sqrt{(2-x)(x-3)}$的定義域為集合B,則A∩B=( 。
A.[3,+∞)B.[2,3]C.(0,2]∪[3,+∞)D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.點P(x,y)的坐標滿足約束條件$\left\{\begin{array}{l}x-2y≥0\\ x+2y+4≥0\\ 7x+2y-8≤0\end{array}\right.$,由點P向圓C:(x+2)2+(y-1)2=1作切線PA,切點為A,則線段|PA|的最小值為( 。
A.$\frac{{4\sqrt{5}}}{5}$B.$\frac{{\sqrt{55}}}{5}$C.$\sqrt{19}$D.$\frac{{\sqrt{33}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=ex(x+1),給出下列命題:
①當(dāng)x>0時,f(x)=ex(1-x)
②函數(shù)f(x)有2個零點
③f(x)>0的解集為(-1,0)∪(1,+∞)
④?x1,x2∈R,都有|f(x1)-f(x2)|<2
其中正確命題個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案