已知△ABC中,∠A=30°,AB,BC分別是
3
+
2
3
-
2
的等差中項(xiàng)與等比中項(xiàng),則△ABC的面積等于
 
考點(diǎn):等比數(shù)列的通項(xiàng)公式,等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件推導(dǎo)出AB=
3
,BC=1,由△ABC中,∠A=30°,利用正弦定理求出∠B=90°或∠B=30°,由此能求出三角形的面積.
解答: 解:∵AB,BC分別是
3
+
2
,
3
-
2
的等差中項(xiàng)與等比中項(xiàng),
∴AB=
3
+
2
+
3
-
2
2
=
3
,
BC=
(
3
+
2
)(
3
-
2
)
=1,
∵△ABC中,∠A=30°,
1
sin30°
=
3
sinC
,∴sinC=
3
2

∴∠C=60°或∠C=120°,
∴∠B=90°或∠B=30°,
∴△ABC的面積S=
1
2
×
3
×1×sin90°=
3
2
,
或S=
1
2
×
3
×1×sin30°
=
3
4

故答案為:
3
4
3
2
點(diǎn)評(píng):本題考查三角形面積的求法,是中檔題,解題時(shí)要注意等差中項(xiàng)、等比中項(xiàng)、正弦定理等知識(shí)點(diǎn)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式x2-x-2m+1>0
(1)若m=
3
2
,求出不等式的解集;
(2)若對(duì)任意實(shí)數(shù)x,已知不等式恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=|x|-|x+1|.
(1)求不等式f(x)≤0的解集A;
(2)若不等式mx+m-1>0對(duì)任何x∈A恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中滿足到點(diǎn)A(3,0)距離為2,且到點(diǎn)B(0,4)距離為3的直線條數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,直線l的傾斜角為α,參數(shù)方程為
x=tcosα
y=tsinα
(t為參數(shù),tanα=
1
2
),圓C的極坐標(biāo)方程為ρ2-8ρcosθ+12=0,直線l與圓C交于A,B兩點(diǎn),則|OA|+|OB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

比較sin(-
π
18
),cos(-
π
3
),sin(-
π
10
)的大小
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是拋物線y2=4x的焦點(diǎn),M是這條拋物線上的一個(gè)動(dòng)點(diǎn),P(3,1)是一個(gè)定點(diǎn),則|MP|+|MF|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2+2xf′(1),則f′(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a0-a1+a2-a3+a4-a5=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案