7.已知集合A={x|$\frac{x+3}{x+1}$≤0},B={-2,-1,0,1},則A∩B的子集個(gè)數(shù)為( 。
A.1B.2C.3D.4

分析 分別求出集合A和B,從而求出A∩B,由此能求出A∩B的子集個(gè)數(shù).

解答 解:∵集合A={x|$\frac{x+3}{x+1}$≤0}={x|-3≤x<-1},B={-2,-1,0,1},
∴A∩B={-2},
∴A∩B的子集個(gè)數(shù)為2.
故選:B.

點(diǎn)評(píng) 本題考查交集的子集個(gè)數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列各式的運(yùn)算結(jié)果為純虛數(shù)的是(  )
A.i(1-i)2B.i2(1+i)C.(1-i)2D.i(1+i)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.我國(guó)古代名著《考工記》中有“一尺之棰,日取其半,萬世不竭”,如圖給出的是計(jì)算截取了6天所剩棰長(zhǎng)的程序框圖,其中判斷框內(nèi)應(yīng)填入的是( 。
A.i≤16?B.i≤32?C.i≤64?D.i≤128?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{-tanx,0≤x<\frac{π}{2}}\end{array}\right.$則f(f($\frac{π}{4}$))=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為{Sn},且Sn=n(n+1)(n∈N*). 
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足:an=$\frac{b_1}{3+1}+\frac{b_2}{{{3^2}+1}}+\frac{b_3}{{{3^3}+1}}+…+\frac{b_n}{{{3^n}+1}}$,求數(shù)列{bn}的通項(xiàng)公式;
(III)令cn=$\frac{{{{({-1})}^n}{a_n}{b_n}}}{4}$,求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=-x2017-x+sinx,若?θ∈(0,$\frac{π}{2}$),f(cos2θ+3msinθ)+f(-3m-2)>0恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.[-$\frac{1}{3}$,+∞)B.(-∞,$-\frac{1}{3}$]C.(-∞,$\frac{1}{3}$]D.[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$α,β∈({\frac{3π}{4},π})$,$cos(α+β)=\frac{4}{5},cos(β-\frac{π}{4})=-\frac{5}{13}$,則$sin(α+\frac{π}{4})$=( 。
A.$\frac{33}{65}$B.$-\frac{33}{65}$C.$-\frac{16}{65}$D.$\frac{16}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=5,$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow$(λ,μ∈R),若$\overrightarrow{a}$⊥$\overrightarrow$,$\overrightarrow{c}$⊥($\overrightarrow$-$\overrightarrow{a}$),則$\frac{λ}{μ}$=$\frac{25}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知方程(m2-2m-3)x+(2m2+m-1)y+6-2m=0(m∈R).
(1)當(dāng)m為何實(shí)數(shù)時(shí),方程表示的直線斜率不存在?求出這時(shí)的直線方程;
(2)已知方程表示的直線l在x軸上的截距為-3,求實(shí)數(shù)m的值;
(3)若方程表示的直線l的傾斜角是45°,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案