17.下列各式的運算結(jié)果為純虛數(shù)的是( 。
A.i(1-i)2B.i2(1+i)C.(1-i)2D.i(1+i)

分析 利用復(fù)數(shù)代數(shù)形式的乘除運算逐一化簡得答案.

解答 解:∵i(1-i)2=i(-2i)=2;
i2(1+i)=-1-i;
(1-i)2=-2i;
i(1+i)=-1+i.
∴計算結(jié)果為純虛數(shù)的是(1-i)2
故選:C.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}\right.$(θ∈[0,2π]),則圓C的圓心坐標(biāo)為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若關(guān)于x的不等式|x-1|+|x+m|>3的解集為R,則實數(shù)m的取值范圍是( 。
A.(-∞,-4)∪(2,+∞)B.(-∞,-4)∪(1,+∞)C.(-4,2)D.[-4,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的前n項和Sn滿足Sn=2an-1(n∈N+).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=an+3n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex+$\frac{ax}{x+1}$-1(a∈R且a為常數(shù)).
(1)當(dāng)a=-1時,討論函數(shù)f(x)在(-1,+∞)的單調(diào)性;
(2)設(shè)y=t(x)可求導(dǎo)數(shù),且它的導(dǎo)函數(shù)t′(x)仍可求導(dǎo)數(shù),則t′(x)再次求導(dǎo)所得函數(shù)稱為原函數(shù)y=t(x)的二階函數(shù),記為t′′(x),利用二階導(dǎo)函數(shù)可以判斷一個函數(shù)的凹凸性.一個二階可導(dǎo)的函數(shù)在區(qū)間[a,b]上是凸函數(shù)的充要條件是這個函數(shù)在(a,b)的二階導(dǎo)函數(shù)非負(fù).
若g(x)=(x+1)[f(x)+1]+(a-$\frac{1}{{2}^{{e}^{4}}}$)x2在(-∞,-1)不是凸函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列函數(shù)中,①f(x)=$\sqrt{x}$②f(x)=$\frac{1}{x}$③f(x)=ex④f(x)=sinx既是奇函數(shù)又存在零點的是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知sin α=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),求tan($\frac{π}{4}-α$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.拋物線C:y2=2px(p>0)上的點$M(\frac{p}{2},p)$到其焦點F的距離是2.
(Ⅰ)求C的方程.
(Ⅱ)過點M作圓D:(x-a)2+y2=1的兩條切線,分別交C于A,B兩點,若直線AB的斜率是-1,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|$\frac{x+3}{x+1}$≤0},B={-2,-1,0,1},則A∩B的子集個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案