若過點(1,0)且圓心在y軸上的圓被x軸分成的兩段弧長之比為1:2,則圓的方程為
 
考點:圓的標準方程
專題:直線與圓
分析:設(shè)B(1,0),由圓被x軸分成的兩段弧長之比為1:2,得∠APB=120°,從而4=3+3t2,由此能求出圓的方程.
解答: 解:圓心為P(0,t)所以圓方程為x2+(y-t)2=1+t2,
令y=0得x=±1所以與x軸的另一個交點為A(-1,0),
設(shè)B(1,0),圓被x軸分成的兩段弧長之比為1:2,
∴∠APB=120°,
∴AB2=AP2+BP2-2AP•BPcos∠APB,
∴4=3+3t2,∴t=±
1
3
,
∴AB2=AP2+BP2-2AP•BPcos∠APB,
∴4=3+3t2,∴t=±
1
3
3
,
圓方程為x2+(y±
3
3
)2
=
4
3
點評:本題考查圓的方程的求法,是中檔題,解題時要認真審題,注意圓的性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sin(2x-
π
6
)
,若f(
α
2
)=
3
4
π
6
<α<
3
),求cos(α+
2
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:“?x∈[1,2],x2-a≥0”,命題q:“?x∈R使x2+2ax+2-a=0”,若命題“p且q”是真命題,則實數(shù)a的取值范圍是( 。
A、{a|a≥1}
B、{a|a≤-2或1≤a≤2}
C、{a|-2≤a≤1}
D、{a|a≤-2或a=1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,使sinx0=
5
2
;命題q:?x∈R,都有x2+2x+3>0.給出下列結(jié)論:
①命題:“p且q”是真命題
②命題“p且(¬q)”是假命題
③命題:“(¬P)或q”是真命題
④命題:“(¬p)或(¬q)”是假命題
其中正確的是( 。
A、②④B、②③C、③④D、①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β,γ是三個不同的平面,則下列為假命題的是( 。
A、若m⊥α,n∥α,則m⊥n
B、若α∥β,β∥γ,m⊥α,則m⊥γ
C、若m⊥α,n⊥β,m∥n,則α∥β
D、若α⊥γ,β⊥γ,則α∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校5名文科和10名理科報名參加暑假英語培訓(xùn),現(xiàn)按分層抽樣的方式從中選出6名學生進行測試,則不同的選法有
 
種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市今年發(fā)行宣傳卡片2015張,每張卡片上印有一個四位數(shù)字的號碼,從0001到2015,如果卡片上的四位數(shù)字之和等于8,則稱這張卡片為“幸運卡片”.那么該地發(fā)行的2015張卡片中“幸運卡片”有
 
張.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,角A、B、C所對的邊分別為a,b,c,若B=A+
π
3
,b=2a,則角B=(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x-a)(x-b)(a<b),函數(shù)g(x)=f(x)-2的零點α,β(α<β)則a,b,α,β從小到大排列為
 

查看答案和解析>>

同步練習冊答案