A. | $({0,\frac{1}{e}})$ | B. | (0,e) | C. | $({\frac{1}{e},e})$ | D. | (-∞,e) |
分析 求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為y=a和g(x)=$\frac{lnx+1}{{e}^{x}}$在(0,+∞)2個交點(diǎn),根據(jù)函數(shù)的單調(diào)性求出g(x)的范圍,從而求出a的范圍即可.
解答 解:f′(x)=lnx-aex+1,
若函數(shù)f(x)=xlnx-aex有兩個極值點(diǎn),
則y=a和g(x)=$\frac{lnx+1}{{e}^{x}}$在(0,+∞)有2個交點(diǎn),
g′(x)=$\frac{\frac{1}{x}-lnx-1}{{e}^{x}}$,(x>0),
令h(x)=$\frac{1}{x}$-lnx-1,則h′(x)=-$\frac{1}{{x}^{2}}$-$\frac{1}{x}$<0,
h(x)在(0,+∞)遞減,而h(1)=0,
故x∈(0,1)時(shí),h(x)>0,即g′(x)>0,g(x)遞增,
x∈(1,+∞)時(shí),h(x)<0,即g′(x)<0,g(x)遞減,
故g(x)max=g(1)=$\frac{1}{e}$,
而x→0時(shí),g(x)→-∞,x→+∞時(shí),g(x)→0,
若y=a和g(x)在(0,+∞)有2個交點(diǎn),
只需0<a<$\frac{1}{e}$,
故選:A.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{3π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,13] | B. | [1,4] | C. | $[{\frac{4}{5},13}]$ | D. | $[{\frac{4}{5},4}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com