已知函數(shù)f(x)=
1+1nx
x

(1)若函數(shù)f(x)在區(qū)間(a,a+
1
3
)(a>0)
上存在極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)知果當(dāng)x≥1時,不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍;
(3)求證:[(n+1)!]2>(n+1)en-2+
2
n+1
,這里n∈N*,(n+1)!=1×2×3×…×(n+1),e為自然對數(shù)的底數(shù).
(1)函數(shù)f(x)的定義域?yàn)椋?,+∞),f′(x)=
1
x
•x-(1+lnx)•1
x2
=-
lnx
x2
,
f′(x)>0?lnx<0?0<x<1,
f′(x)<0?lnx>0?x>1,
所以f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,函數(shù)f(x)在x=1處取得唯一的極值,
由題意,a>0,且a<1<a+
1
3
,解得
2
3
<a<1,
所以實(shí)數(shù)a的取值范圍為
2
3
<a<1;
(2)當(dāng)x≥1時,f(x)≥
k
x+1
?
1+lnx
x
k
x+1
?k≤
(x+1)(1+lnx)
x
,
令g(x)=
(x+1)(1+lnx)
x
(x≥1),由題意,k≤g(x)在[1,+∞)上恒成立,
g′(x)=
[(x+1)(1+lnx)]′•x-(x+1)(1+lnx)
x2
=
x-lnx
x2
,
令h(x)=x-lnx(x≥1),則h′(x)=1-
1
x
≥0,當(dāng)且僅當(dāng)x=1時取等號,
所以h(x)=x-lnx在[1,+∞)上單調(diào)遞增,h(x)≥h(1)=1>0,
因此g′(x)=
h(x)
x2
>0,g(x)在[1,+∞)上單調(diào)遞增,g(x)min=g(1)=2,
所以k≤2;
(3)由(2),當(dāng)x≥1時,f(x)≥
2
x+1
,即
1+lnx
x
2
x+1

從而lnx≥1-
2
x+1
>1-
2
x
,
令x=k(k+1),k∈N+,則有l(wèi)n[k(k+1)]>1-
2
k(k+1)
,
分別令k=1,2,3,…,n(n≥2)則有l(wèi)n(1×2)>1-
2
1×2
,ln(2×3)>1-
2
2×3
,…,
ln[n(n-1)]>1-
2
(n-1)n
,ln[n(n+1)]>1-
2
n(n+1)
,
將這個不等式左右兩端分別相加,則得,
ln[1×22×32×…×n2(n+1)]>n-2[
1
1×2
+
1
2×3
+…+
1
n(n+1)
]=n-2+
2
n+1
,
故1×22×32×…×n2(n+1)>en-2+
2
n+1
,從而[(n+1)!]2>(n+1)en-2+
2
n+1

當(dāng)n=1時,不等式顯然成立;
所以?n∈N+,[(n+1)!]2>(n+1)en-2+
2
n+1
;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個極大值點(diǎn);
②?x∈(8,+∞),f(x)>0.
則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x≥1時,不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案