在底面為正方形的四棱錐P-ABCD中,PA⊥底面ABCD,PA=AB=2,則三棱錐B-PCD的體積為
 
考點(diǎn):棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:由題意可知:求出三棱錐的底面積,高為PA=2,代入公式V=
1
3
Sh,計(jì)算即可.
解答: 解:由題意可知:三棱錐B-PCD的體積為三棱錐P-BCD的體積,
該四棱錐的底面積為S=2×2=4,三角形BCD的面積為:4×
1
2
=2,
高為PA=2,
故體積V=
1
3
Sh=
1
3
×2×2=
4
3

故答案為:
4
3
點(diǎn)評:本題考查四棱錐的體積的求解,得出底面積和高是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=2cos66°,b=cos5°-
3
sin5°,c=2﹙sin47°sin60°-sin24°sin43°﹚,則a,b,c的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin(-
4
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(n,m)和點(diǎn)B(n+1,t)在二次函數(shù)y=x2的圖象上,n為正整數(shù),直線AB與x軸所成的銳角的大小為α,則tanα=(  )
A、n+1B、2n+1
C、n-1D、2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln
2x
ax+b
滿足f(1)=0,且對任何正數(shù)x,都有f(x)-f(
1
x
)=lnx.
(1)求實(shí)數(shù)a,b的值;
(2)若關(guān)于x的方程f(x)=ln(m+x)無實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是橢圓
x2
4
+y2=1上任意一點(diǎn),A是橢圓的左頂點(diǎn),F(xiàn)1,F(xiàn)2分別是橢圓的左焦點(diǎn)和右焦點(diǎn),則
PA
PF1
+
PA
PF2
的最大值為( 。
A、8B、16C、12D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一圓錐的底面半徑為1,高為
3
,則圓錐的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖,則該幾何體的表面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D為AC中點(diǎn),點(diǎn)E滿足,
BE
=
2
5
BD
,若F為邊BC上一點(diǎn),且滿足
AF
AE
,則λ=
 

查看答案和解析>>

同步練習(xí)冊答案