已知tanθ=2,求下列各式的值:
(1)
sin(π-θ)+cos(θ-π)
sin(θ+π)+cos(θ+π)
;
(2)sin2θ.
考點:二倍角的正弦,運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:(1)由誘導(dǎo)公式可將
sin(π-θ)+cos(θ-π)
sin(θ+π)+cos(θ+π)
化簡,再將tanθ=2代入即可求出.
(2)由萬能公式將sin2θ變形,代入tanθ=2即可求出.
解答: 解:(1)
sin(π-θ)+cos(θ-π)
sin(θ+π)+cos(θ+π)
=
sinθ-coxθ
-sinθ-coxθ
=
1-tanθ
1+tanθ
=
1-2
1+2
=-
2
3
;
(2)sin2θ=
2tanθ
1+tan2θ
=
4
5
點評:本題主要考察運用誘導(dǎo)公式化簡求值、萬能公式的應(yīng)用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

原命題:“設(shè)a,b,c∈R,若a>b,則ac2>bc2”的逆命題、否命題、逆否命題中真命題有( 。﹤.
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a,b,c為實數(shù),且4a-4b+c>0,a+2b+c<0,16a-8b+c<0,則( 。
A、b2<ac且a>0
B、b2>ac且a<0
C、b2>ac且a>0
D、b2<ac且a<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a、b是不同直線,α、β、γ是不同平面,給出下列命題正確的是( 。
①若α∥β,a?α,則a∥β;
②若a、b與α所成角相等,則a∥b;
③若α⊥β,β⊥γ,則α∥γ;
④若a⊥α,a⊥β,則α∥β.
A、①②③B、①③④
C、②③④D、①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(a,-5)與B(0,10)間的距離是17,求a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x3-ax2+x在x=1處的切線與直線x+2y-3=0垂直,則a的值為( 。
A、3B、2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若S30=S70,則S100=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三個互不相等的實數(shù)a,1,b依次成等差數(shù)列,且a2,1,b2依次成等比數(shù)列,則
1
a
+
1
b
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ln(1-lgx)的定義域為
 

查看答案和解析>>

同步練習冊答案