1.函數(shù)y=x3+x2-x+1在區(qū)間[-2,1]上的最小值為(  )
A.$\frac{22}{27}$B.2C.-1D.-4

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值,比較端點值求出函數(shù)的最小值即可.

解答 解:y′=3x2+2x-1=(3x-1)(x+1),
令y′>0,解得:x>$\frac{1}{3}$或x<-1,
令y′<0,解得:-1<x<$\frac{1}{3}$,
∴函數(shù)在[-2,-1)遞增,在(-1,$\frac{1}{3}$)遞減,在($\frac{1}{3}$,1]遞增,
∴x=-1時,取極大值,極大值是2,
x=$\frac{1}{3}$時,函數(shù)取極小值,極小值是$\frac{22}{27}$,
而x=-2時,y=-1,x=1時,y=2,
故函數(shù)的最小值是-1,
故選:C.

點評 本題考查了函數(shù)的單調(diào)性、極值、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)$a=\frac{1}{ln10},b={(lge)^2},c=lg\sqrt{e}$,則有( 。
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{{{x^2}+ax+b}}{e^x}$,若曲線y=f(x)在點(1,f(1))處的切線平行于x軸.
(1)求b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)全集U={(x,y)|x,y∈R},$P=\left\{{(x,y)|\left\{{\begin{array}{l}{3x+4y-12>0}\\{2x-y-8<0}\\{x-2y+6>0}\end{array},x,y∈R}\right.}\right\}$Q={(x,y)|x2+y2≤r2,r∈R+},若Q⊆∁UP恒成立,則實數(shù)r的最大值是$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=atanx-bsinx+1,且$f({\frac{π}{4}})=7$,則$f({-\frac{π}{4}})$=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)=ex-ax-1為增函數(shù),則a的取值范圍為a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.寫出下列命題的否定并判斷真假:
(1)所有自然數(shù)的平方是正數(shù);
(2)任何實數(shù)x都是方程5x-12=0的根;
(3)?x∈R,x2-3x+3>0;     
(4)有些質(zhì)數(shù)不是奇數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知曲線f(x)=x3-2x2+1
(1)求在點P(1,0)處的切線l1的方程;
(2)求經(jīng)過點Q(2,1)且與已知曲線f(x)相切的直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=3x3-9x+5在區(qū)間[-2,2]上的最大值與最小值之和是10.

查看答案和解析>>

同步練習(xí)冊答案