6.已知函數(shù)f(x)=x3-3ax+b(a≠0).
(1)若曲線y=f(x)在點(diǎn)(2,f(x))處與直線y=8相切,求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).

分析 (1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于a,b的方程組,解出即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值點(diǎn)即可.

解答 解:(1)f′(x)=3x2-3a,
∵曲線y=f(x)在點(diǎn)(2,f(x))處與直線y=8相切,
∴$\left\{\begin{array}{l}{f′(2)=0}\\{f(2)=8}\end{array}\right.$,即$\left\{\begin{array}{l}{3(4-a)=0}\\{8-6a+b=8}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=4}\\{b=24}\end{array}\right.$;
(2)∵f′(x)=3(x2-a),(a≠0),
當(dāng)a<0時(shí),f′(x)>0,f(x)在R上單調(diào)遞增,
此時(shí)函數(shù)f(x)沒(méi)有極值點(diǎn).
當(dāng)a>0時(shí),由f′(x)=0,解得:x=±$\sqrt{a}$,
當(dāng)x∈(-∞,-$\sqrt{a}$)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增,
當(dāng)x∈(-$\sqrt{a}$,$\sqrt{a}$)時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減,
當(dāng)x∈[$\sqrt{a}$,+∞)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增,
∴此時(shí)x=-$\sqrt{a}$是f(x)的極大值點(diǎn),x=$\sqrt{a}$是f(x)的極小值點(diǎn).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,4).
(1)求$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角;
(2)若$\overrightarrow{c}$滿(mǎn)足$\overrightarrow{c}$⊥($\overrightarrow{a}$+$\overrightarrow$),($\overrightarrow{c}$+$\overrightarrow{a}$)∥$\overrightarrow$,求$\overrightarrow{c}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.角-1540°為第三象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知圓錐雙曲線E:x2-y2=1.
(Ⅰ)設(shè)曲線E'表示曲線E的y軸左邊部分,若直線y=kx-1與曲線E'相交于A,B兩點(diǎn),求k的取值范圍;
(Ⅱ)在條件(Ⅰ)下,如果$\overrightarrow{AB}=6\sqrt{3}$,且曲線E'上存在點(diǎn)C,使$\overrightarrow{OA}+\overrightarrow{OB}=m\overrightarrow{OC}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列說(shuō)法正確的是(  )
A.命題:“若x2-3x+2=0,則x=2”的否命題為假命題
B.命題”存在x≥0,使2x=5”的否定為”對(duì)任意x<0,都有2x≠5”
C.若p且q為假命題,則p、q均為假命題
D.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.曲線y=$\frac{1}{3}{x^3}$+x-$\frac{1}{3}$在點(diǎn)(1,1)處的切線與坐標(biāo)軸圍成的三角形面積為(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,已知圓錐OO1和圓柱O1O2的組合體(它們的底面重合),圓錐的底面圓O1半徑為r=5,OA為圓錐的母線,AB為圓柱O1O2的母線,D、E為下底面圓O2上的兩點(diǎn),且DE=6,AB=6.4,AO=5$\sqrt{2}$,AO⊥AD.
(1)求證:平面ABD⊥平面ODE;
(2)求二面角B-AD-O的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,f′(x)是f(x)的導(dǎo)函數(shù),則不等式(x-1)f′(x)<0的解集為(-∞,$\frac{1}{2}$)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在平面直角坐標(biāo)系xoy中,圓的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosφ\(chéng)\ y=2\sqrt{3}+sinφ\(chéng)end{array}\right.$(φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為$\sqrt{3}ρcosθ+3ρsinθ+4\sqrt{3}=0$.
(1)將圓的參數(shù)方程化為普通方程,在化為極坐標(biāo)方程;
(2)若點(diǎn)P在直線l上,當(dāng)點(diǎn)P到圓的距離最小時(shí),求點(diǎn)P的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案