【題目】是自然對(duì)數(shù)的底數(shù),已知函數(shù),.

1)求函數(shù)的最小值;

2)函數(shù)上能否恰有兩個(gè)零點(diǎn)?證明你的結(jié)論.

【答案】12)能夠恰有兩個(gè)零點(diǎn),證明見(jiàn)解析

【解析】

1)先求導(dǎo)數(shù),再求極值。然后可得最小值;

2)結(jié)合零點(diǎn)存在定理進(jìn)行判定.

1)求導(dǎo),由,得.列表如下:

+

0

0

+

單調(diào)遞增

有極大值

單調(diào)遞減

有極小值

單調(diào)遞增

為極大值,為極小值.

又因?yàn)?/span>當(dāng)且僅當(dāng)時(shí),,并且在區(qū)間為減函數(shù),在區(qū)間為增函數(shù),

上的最小值為.

2)函數(shù)上能夠恰有兩個(gè)零點(diǎn);

證明如下:,知是一個(gè)零點(diǎn).

又由(1)知,是函數(shù)的一個(gè)極大值,在單調(diào)區(qū)間都不會(huì)再有零點(diǎn)了.

考慮單調(diào)區(qū)間,由, ,

可見(jiàn),函數(shù)在單調(diào)區(qū)間恰有一個(gè)零點(diǎn).所以,函數(shù)上恰有兩個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市一所高中為備戰(zhàn)即將舉行的全市羽毛球比賽,學(xué)校決定組織甲、乙兩隊(duì)進(jìn)行羽毛球?qū)官悓?shí)戰(zhàn)訓(xùn)練.每隊(duì)四名運(yùn)動(dòng)員,并統(tǒng)計(jì)了以往多次比賽成績(jī),按由高到低進(jìn)行排序分別為第一名、第二名、第三名、第四名.比賽規(guī)則為甲、乙兩隊(duì)同名次的運(yùn)動(dòng)員進(jìn)行對(duì)抗,每場(chǎng)對(duì)抗賽都互不影響,當(dāng)甲、乙兩隊(duì)的四名隊(duì)員都進(jìn)行一次對(duì)抗賽后稱(chēng)為一個(gè)輪次.按以往多次比賽統(tǒng)計(jì)的結(jié)果,甲、乙兩隊(duì)同名次進(jìn)行對(duì)抗時(shí),甲隊(duì)隊(duì)員獲勝的概率分別為,,,.

(1)進(jìn)行一個(gè)輪次對(duì)抗賽后一共有多少種對(duì)抗結(jié)果?

(2)計(jì)分規(guī)則為每次對(duì)抗賽獲勝一方所在的隊(duì)得1分,失敗一方所在的隊(duì)得0分,設(shè)進(jìn)行一個(gè)輪次對(duì)抗賽后甲隊(duì)所得分?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)求函數(shù)的單調(diào)增區(qū)間;

2)令,且函數(shù)有三個(gè)彼此不相等的零點(diǎn),其中.

①若,求函數(shù)處的切線方程;

②若對(duì),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程;

2)若點(diǎn)與點(diǎn)分別為曲線動(dòng)點(diǎn),求的最小值,并求此時(shí)的點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是自然對(duì)數(shù)的底數(shù),,已知函數(shù),.

1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

2)對(duì)于,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】博覽會(huì)安排了分別標(biāo)有序號(hào)為“1號(hào)”“2號(hào)”“3號(hào)”的三輛車(chē),等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計(jì)兩種乘車(chē)方案.方案一:不乘坐第一輛車(chē),若第二輛車(chē)的車(chē)序號(hào)大于第一輛車(chē)的車(chē)序號(hào),就乘坐此車(chē),否則乘坐第三輛車(chē);方案二:直接乘坐第一輛車(chē).記方案一與方案二坐到“3號(hào)”車(chē)的概率分別為P1,P2,則( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,討論的單調(diào)性;

2)若在區(qū)間內(nèi)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別為橢圓的左、右焦點(diǎn),為該橢圓的一條垂直于軸的動(dòng)弦,直線軸交于點(diǎn),直線與直線的交點(diǎn)為.

1)證明:點(diǎn)恒在橢圓.

2)設(shè)直線與橢圓只有一個(gè)公共點(diǎn),直線與直線相交于點(diǎn),在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體,過(guò)對(duì)角線作平面交棱于點(diǎn)E,交棱于點(diǎn)F,則:

①四邊形一定是平行四邊形;

②四邊形有可能為正方形;

③四邊形在底面內(nèi)的投影一定是正方形;

④平面有可能垂直于平面.

其中所有正確結(jié)論的序號(hào)為(

A.①②B.②③④C.①④D.①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案