分析 (1)通過討論m的范圍,結(jié)合二次函數(shù)的性質(zhì)求出m的范圍即可;
(2)根問題轉(zhuǎn)化為$\left\{\begin{array}{l}{{-x}^{2}+2x-1<0}\\{{x}^{2}-2x-1<0}\end{array}\right.$,解不等式組即可.
解答 解:(1)m=0時,-1<0恒成立,
m≠0時,$\left\{\begin{array}{l}{m<0}\\{△={4m}^{2}+4m<0}\end{array}\right.$,解得:-1<m<0,
綜上,m的范圍是(-1,0];
(2)設(shè)f(m)=(x2-2x)m-1,
由題意得$\left\{\begin{array}{l}{f(-1)<0}\\{f(1)<0}\end{array}\right.$即$\left\{\begin{array}{l}{{-x}^{2}+2x-1<0}\\{{x}^{2}-2x-1<0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x≠1}\\{1-\sqrt{2}<x<1+\sqrt{2}}\end{array}\right.$,
∴1-$\sqrt{2}$<x<1或1<x<1+$\sqrt{2}$,
故x的范圍是(1-$\sqrt{2}$,1)∪(1,1+$\sqrt{2}$).
點評 本題考查了二次函數(shù)的性質(zhì),考查絕對值問題,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[\frac{2}{3},1)$ | B. | $[\frac{1}{3},1)$ | C. | $[\frac{1}{3},1)∪(1,3]$ | D. | (1,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{7}}}{3}$ | B. | 3 | C. | $\frac{{\sqrt{11}}}{3}$ | D. | $\frac{{\sqrt{17}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2或4 | B. | 1或4 | C. | 1或2 | D. | -6或2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com