精英家教網 > 高中數學 > 題目詳情
(2013•朝陽區(qū)二模)點P是棱長為1的正方體ABCD-A1B1C1D1的底面A1B1C1D1上一點,則
PA
PC1
的取值范圍是( 。
分析:建立空間直角坐標系,則點A(1,0,0),C1 (0,1,1),設點P的坐標為(x,y,z),則由題意可得 0≤x≤1,
0≤y≤1,z=1,計算
PA
PC1
=x2-x,再利用二次函數的性質求得它的值域.
解答:解:如圖所示:以點D為原點,以DA所在的直線為x軸,以DC所在的直線為y軸,以DD1所在的直線為z軸,
建立空間直角坐標系.
則點A(1,0,0),C1 (0,1,1),設點P的坐標為(x,y,z),則由題意可得 0≤x≤1,0≤y≤1,z=1.
PA
=(1-x,-y,-1),
PC1
=(-x,1-y,0),
PA
PC1
=-x(1-x)-y(1-y)+0=x2-x+y2-y=(x-
1
2
)
2
+(y-
1
2
)
2
-
1
2

由二次函數的性質可得,當x=y=
1
2
時,
PA
PC1
取得最小值為-
1
2

故當x=0或1,且y=0或1時,
PA
PC1
取得最大值為0,
PA
PC1
的取值范圍是[-
1
2
,0],
故選D.
點評:本題主要考查向量在幾何中的應用,兩個向量的數量積公式,兩個向量坐標形式的運算,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•朝陽區(qū)二模)為了解某市今年初二年級男生的身體素質狀況,從該市初二年級男生中抽取了一部分學生進行“擲實心球”的項目測試.成績低于6米為不合格,成績在6至8米(含6米不含8米)的為及格,成績在8米至12米(含8米和12米,假定該市初二學生擲實心球均不超過12米)為優(yōu)秀.把獲得的所有數據,分成[2,4),[4,6),[6,8),[8,10),[10,12]五組,畫出的頻率分布直方圖如圖所示.已知有4名學生的成績在10米到12米之間.
(Ⅰ)求實數a的值及參加“擲實心球”項目測試的人數;
(Ⅱ)根據此次測試成績的結果,試估計從該市初二年級男生中任意選取一人,“擲實心球”成績?yōu)閮?yōu)秀的概率;
(Ⅲ)若從此次測試成績不合格的男生中隨機抽取2名學生再進行其它項目的測試,求所抽取的2名學生來自不同組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•朝陽區(qū)二模)已知等差數列{an}的公差為-2,a3是a1與a4的等比中項,則首項a1=
8
8
,前n項和Sn=
-n2+9n
-n2+9n

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•朝陽區(qū)二模)已知函數f(x)=a•2|x|+1(a≠0),定義函數F(x)=
f(x),x>0
-f(x),x<0
給出下列命題:
①F(x)=|f(x)|; 
②函數F(x)是奇函數;
③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,
其中所有正確命題的序號是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•朝陽區(qū)二模)在△ABC中,角A,B,C所對的邊分別為a,b,c,且f(A)=2cos
A
2
sin(π-
A
2
)
+sin2
A
2
-cos2
A
2

(Ⅰ)求函數f(A)的最大值;
(Ⅱ)若f(A)=0,C=
12
,a=
6
,求b的值.

查看答案和解析>>

同步練習冊答案