分析 (1)對a進行討論,判斷f′(x)的符號得出f(x)的單調區(qū)間;
(2)對-$\frac{1}{a}$和區(qū)間[1,2]的關系進行討論,判斷f(x)在[1,2]上的單調性,從而計算出f(x)的最小值.
解答 解:(1)f(x)的定義域為(0,+∞).
f′(x)=$\frac{1}{x}$+a,
若a≥0時,f′(x)>0,
若a<0,令f′(x)=0得x=-$\frac{1}{a}$.
∴當0<x<-$\frac{1}{a}$時,f′(x)>0,當x$>-\frac{1}{a}$時,f′(x)<0,
綜上,當a≥0時,f(x)的增區(qū)間為(0,+∞),
當a<0時,f(x)的增區(qū)間為(0,-$\frac{1}{a}$),減區(qū)間為(-$\frac{1}{a}$,+∞).
(2)由(1)可知f(x)在(0,-$\frac{1}{a}$)上單調遞增,在(-$\frac{1}{a}$,+∞)上單調遞減.
①當2≤-$\frac{1}{a}$即-$\frac{1}{2}$≤a<0時,f(x)在[1,2]上單調遞增,
∴fmin(x)=f(1)=a;
②當-$\frac{1}{a}$≤1即a≤-1時,f(x)在[1,2]上單調遞減,
∴fmin(x)=f(2)=ln2+2a;
③當1<-$\frac{1}{a}$<2即-1<a<-$\frac{1}{2}$時,f(x)在[1,-$\frac{1}{a}$]上單調遞增,在[-$\frac{1}{a}$,2]上單調遞減,
若f(1)≤f(2),即a≤ln2+2a,解得a≥-ln2
若f(1)>f(2),即a>ln2+2a,解得a<-ln2.
∴當-ln2≤a<-$\frac{1}{2}$時,fmin(x)=f(1)=a,
當-1<a<-ln2時,fmin(x)=f(2)=ln2+2a.
綜上:當-ln2≤a<0時,fmin(x)=a,
當a<-ln2時,fmin(x)=ln2+2a.
點評 本題考查了導數(shù)與函數(shù)單調性的關系,分類討論思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ab>b2 | B. | $\frac{1}{a}$>$\frac{1}$ | C. | $\frac{1}{a}$<$\frac{1}$ | D. | a2>ab |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -10 | B. | -2 | C. | 0 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com