【題目】如圖,三棱臺(tái)中, 側(cè)面與側(cè)面是全等的梯形,若,且.

(Ⅰ)若 ,證明: ∥平面;

(Ⅱ)若二面角,求平面與平面所成的銳二面角的余弦值.

【答案】()見解析() .

【解析】試題分析:() 連接,由比例可得,進(jìn)而得線面平行;

(Ⅱ)過點(diǎn)的垂線,建立空間直角坐標(biāo)系,不妨設(shè),則求得平面的法向量為,設(shè)平面的法向量為,由求二面角余弦即可.

試題解析:

(Ⅰ)證明:連接,梯形, ,

易知: ;

,則;

平面 平面,

可得: ∥平面

(Ⅱ)側(cè)面是梯形, ,

, ,

為二面角的平面角, ;

均為正三角形,在平面內(nèi),過點(diǎn)的垂線,如圖建立空間直角坐標(biāo)系,不妨設(shè),則

,故點(diǎn),

;

設(shè)平面的法向量為,則有: ;

設(shè)平面的法向量為,則有:

,

故平面與平面所成的銳二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足 (其中a>0,a≠1)
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)對(duì)于函數(shù)f(x),當(dāng)x∈(﹣1,1)時(shí),f(1﹣m)+f(1﹣m2)<0,求實(shí)數(shù)m的取值范圍;
(Ⅲ)當(dāng)x∈(﹣∞,2)時(shí),f(x)﹣4的值為負(fù)數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),正實(shí)數(shù)a,b,c是公差為正數(shù)的等差數(shù)列,且滿足.若實(shí)數(shù)d是方程的一個(gè)解,那么下列三個(gè)判斷:①d<a;②d<b;③d<c中有可能成立的個(gè)數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的三邊長是公差為2的等差數(shù)列,且最大角的正弦值為,則這個(gè)三角形的周長是(

A. 18 B. 15 C. 21 D. 24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若樣本平均數(shù)是4,方差是2,則另一樣本的平均數(shù)和方差分別為( )

A. 12,2 B. 14,6 C. 12,8 D. 14,18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形與梯形全等, , , , 中點(diǎn).

(Ⅰ)證明: 平面

(Ⅱ)點(diǎn)在線段上(端點(diǎn)除外),且與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某中學(xué)高中某學(xué)科競(jìng)賽中,該中學(xué)100名考生的參賽成績(jī)統(tǒng)計(jì)如圖所示.

(1)求這100名考生的競(jìng)賽平均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);

(2)記70分以上為優(yōu)秀,70分及以下為合格,結(jié)合頻率分布直方圖完成下表,并判斷是否有99%的把握認(rèn)為該學(xué)科競(jìng)賽成績(jī)與性別有關(guān)?

合格

優(yōu)秀

合計(jì)

男生

18

女生

25

合計(jì)

100

附:

0.050

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上的一動(dòng)點(diǎn)到右焦點(diǎn)的最短距離為,且右焦點(diǎn)到右準(zhǔn)線的距離等于短半軸的長.

(1)求橢圓的方程;

(2)設(shè)是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連接交橢圓于另一點(diǎn),證明直線軸相交于定點(diǎn)

(3)在(2)的條件下,過點(diǎn)的直線與橢圓交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案