【題目】如圖,平面α平面βl,ACα內(nèi)不同的兩點,B,Dβ內(nèi)不同的兩點,且AB,C,D直線l,MN分別是線段AB,CD的中點.下列判斷正確的是(  )

A.ABCD,則MNl

B.M,N重合,則ACl

C.ABCD相交,且ACl,則BD可以與l相交

D.ABCD是異面直線,則MN不可能與l平行

【答案】BD

【解析】

由若兩兩相交的平面有三條交線,交線要么相交于一點,要么互相平行判定、;用反證法證明

解:若,則、、四點共面,當(dāng)時,

平面、、兩兩相交有三條交線,分別為、,則三條交線交于一點

與平面交于點,不平行,故錯誤;

,兩點重合,則,、、四點共面,

平面、兩兩相交有三條交線,分別為、

,得,故正確;

相交,確定平面,平面、、兩兩相交有三條交線,分別為、,

,得,故錯誤;

當(dāng),是異面直線時,如圖,連接,取中點,連接

,,,則,假設(shè),

,,

,平面,同理可得,平面,則,與平面平面矛盾.

假設(shè)錯誤,不可能與平行,故正確.

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若,求函數(shù)的極值;

(2)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新《水污染防治法》已由中華人民共和國第十二屆全國人民代表大會常務(wù)委員會第二十八次會議于2017627日通過,自201811日起施行.201831日,某縣某質(zhì)檢部門隨機(jī)抽取了縣域內(nèi)100眼水井,檢測其水質(zhì)總體指標(biāo).

羅斯水質(zhì)指數(shù)

02

24

46

68

810

水質(zhì)狀況

腐敗污水

嚴(yán)重污染

污染

輕度污染

純凈

1)求所抽取的100眼水井水質(zhì)總體指標(biāo)值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

2)①由直方圖可以認(rèn)為,100眼水井水質(zhì)總體指標(biāo)值服從正態(tài)分布,利用該正態(tài)分布,求落在(5.21,5.99)內(nèi)的概率;

②將頻率視為概率,若某鄉(xiāng)鎮(zhèn)抽查5眼水井的水質(zhì),記這5眼水井水質(zhì)總體指標(biāo)值位于(6,10)內(nèi)的井?dāng)?shù)為,求的分布列和數(shù)學(xué)期望.

附:①計算得所抽查的這100眼水井總體指標(biāo)的標(biāo)準(zhǔn)差為;

②若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,直線交橢圓兩點,為坐標(biāo)原點.

1)若直線過橢圓的右焦點,求的面積;

2)若,試問橢圓上是否存在點,使得四邊形為平行四邊形?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的正方形,,中點,點上且平面,延長線上,,交,且.

1)證明:平面

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為正項等比數(shù)列,a11,數(shù)列{bn}滿足b23a1b1+a2b2+a3b3+…+anbn3+2n32n

1)求an;

2)求的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓.

(Ⅰ)若的一個焦點為,且點上,求橢圓的方程;

(Ⅱ)已知上有兩個動點,為坐標(biāo)原點,且,求線段的最小值(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線的焦點,點是拋物線上一點,且,直線過定點(4,0),與拋物線交于兩點,點在直線上的射影是.

1)求的值;

2)若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面四邊形是直角梯形,底面,,,,的中點.

1)求證:平面;

2)若直線與平面所成角的正弦值為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案