【題目】某高校在2016年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如下表所示.

組號

分組

頻數(shù)

頻率

1

5

0.050

2

n

0.350

3

30

p

4

20

0.200

5

10

0.100

合計

100

1.000

(1)求頻率分布表中n,p的值,并估計該組數(shù)據(jù)的中位數(shù)(保留l位小數(shù));

(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學生進入第二輪面試,則第3、4、5組每組各抽取多少名學生進入第二輪面試?

(3)在(2)的前提下,學校決定從6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有1名學生被甲考官面試的概率.

【答案】(1),,中位數(shù)估計值為171.7(2)第3、4、5組每組各抽學生人數(shù)為32、1(3)

【解析】

(1)由頻率分布表可得:,由中位數(shù)的求法可得中位數(shù)估計值為171.7;

(2)因為筆試成績高的第3、4、5組的人數(shù)之比為,由分層抽樣的方法選6名學生,三個小組分別選的人數(shù)為3、2、1;

(3)先列舉出從6名學生中隨機抽取2名學生的不同取法,再列舉出第4組至少有1名學生被甲考官面試的取法,再結(jié)合古典概型的概率公式即可得解.

解:(1)由已知:

,

,中位數(shù)為171.7,

即中位數(shù)估計值為171.7,

(2)由已知,筆試成績高的第3、4、5組的人數(shù)之比為,現(xiàn)用分層抽樣的方法選6名學生。故第3、4、5組每組各抽學生人數(shù)為3、2、1

(3)在(2)的前提下,記第3組的3名學生為,

第4組的2名學生為,,第5組的1名學生為,且“第4組至少有1名學生被甲考官面試”為事件A

則所有的基本事件有:,,,,,,,,,,,,一共15種。

A事件有:,,,,,,,,,一共9種。

答:第4組至少有1名學生被甲考官面試的概率為。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2018614日,世界杯足球賽在俄羅斯拉開帷幕,世界杯給俄羅斯經(jīng)濟帶來了一定的增長,某紀念商品店的銷售人員為了統(tǒng)計世界杯足球賽期間商品的銷售情況,隨機抽查了該商品商店某天200名顧客的消費金額情況,得到如圖頻率分布表:將消費顧客超過4萬盧布的顧客定義為足球迷”,消費金額不超過4萬盧布的顧客定義為“非足球迷”。

消費金額/萬盧布

合計

顧客人數(shù)

9

31

36

44

62

18

200

(1)求這200名顧客消費金額的中位數(shù)與平均數(shù)(同一組中的消費金額用該組的中點值作代表;

(2)該紀念品商店的銷售人員為了進一步了解這200名顧客喜歡紀念品的類型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再從這5人中隨機選取3人進行問卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】紀念幣是一個國家為紀念國際或本國的政治、歷史,文化等方面的重大事件、杰出人物、名勝古跡、珍稀動植物、體育賽事等而發(fā)行的法定貨幣.我國在 1984 年首次發(fā)行紀念幣,目前已發(fā)行了 115 套紀念幣,這些紀念幣深受郵幣愛好者的喜愛與收,2019 年發(fā)行的第 115 套紀念幣雙遺產(chǎn)之泰山幣是目前為止發(fā)行的第一套異形幣,因為這套紀念幣的多種特質(zhì),更加受到愛好者追捧.某機構(gòu)為調(diào)查我國公民對紀念幣的喜愛態(tài)度,隨機選了某城市某小區(qū)的 50 位居民調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:

喜愛

不喜愛

合計

年齡不大于40

24

年齡大于40

40

合計

22

50

1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

2)判斷能否在犯錯誤的概率不超過 1% 的前提下認為不同年齡與紀念幣的喜愛無關?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}為等比數(shù)列,a1=2,公比q>0,且a2,6,a3成等差數(shù)列.

(1)求數(shù)列{an}的通項公式;

(2)設bn=log2an,,求使的n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,是等邊三角形,四邊形ABCD是矩形,,F為棱PA上一點,且,MAD的中點,四棱錐的體積為

(1)若,NPB的中點,求證:平面平面PCD;

(2)是否存在,使得平面FMB與平面PAD所成的二面角余弦的絕對值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對轄區(qū)內(nèi),,三類行業(yè)共200個單位的生態(tài)環(huán)境治理成效進行了考核評估,考評分數(shù)達到80分及其以上的單位被稱為“星級”環(huán)保單位,未達到80分的單位被稱為“非星級”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個單位,其考評分數(shù)如下:

類行業(yè):8582,7778,83,87;

類行業(yè):76,6780,85,7981;

類行業(yè):87,89,76,86,7584,90,82

(Ⅰ)計算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個數(shù);

(Ⅱ)若從抽取的類行業(yè)這6個單位中,再隨機選取3個單位進行某項調(diào)查,求選出的這3個單位中既有“星級”環(huán)保單位,又有“非星級”環(huán)保單位的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】長沙某超市計劃按月訂購一種冰激凌,每天進貨量相同,進貨成本為每桶5元,售價為每桶7元,未售出的冰激凌以每桶3元的價格當天全部處理完畢.根據(jù)往年銷售經(jīng)驗,每天的需求量與當天最高氣溫(單位:)有關,如果最高氣溫不低于,需求量為600桶;如果最高氣溫(單位:)位于區(qū)間,需求量為400桶;如果最高氣溫低于,需求量為200桶.為了確定今年九月份的訂購計劃,統(tǒng)計了前三年九月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫(

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

1)求九月份這種冰激凌一天的需求量(單位:桶)的分布列;

2)設九月份一天銷售這種冰激凌的利潤為(單位:元),當九月份這種冰激凌一天的進貨量(單位:桶)為多少時,的均值取得最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)

1)求的值;

2時,求的取值范圍;

3)函數(shù)的性質(zhì)通常指的是函數(shù)的定義域、值域、單調(diào)性、周期性、奇偶性等,請你探究函數(shù)其中的三個性質(zhì)(直接寫出結(jié)論即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為考察某種藥物預防疾病的效果,進行動物試驗,調(diào)查了 105 個樣本,統(tǒng)計結(jié)果為:服藥的共有 55 個樣本,服藥但患病的仍有 10 個樣本,沒有服藥且未患病的有 30個樣本.

(1)根據(jù)所給樣本數(shù)據(jù)完成 列聯(lián)表中的數(shù)據(jù);

(2)請問能有多大把握認為藥物有效?

(參考公式:獨立性檢驗臨界值表

概率

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

患病

不患病

合計

服藥

沒服藥

合計

查看答案和解析>>

同步練習冊答案