已知函數(shù)f(x+1)=x2+x,則f(x)=
x2-x
x2-x
分析:由題意,可用換元法求函數(shù)解析式,令t=x+1得x=t-1,代入f(x+1)=x2+x,整理即可得到所求的函數(shù)解析式
解答:解:由題意,t=x+1得x=t-1
∵f(x+1)=x2+x,
則f(t)=(t-1)2+t-1=t2-t
∴f(x)=x2-x
故答案為:x2-x
點評:本題考查函數(shù)解析式求解方法-換元法,掌握換元法的解題步驟及規(guī)則是解答本題的關(guān)鍵,換元法適用于已知復(fù)合函數(shù)解析式與內(nèi)層函數(shù)解析式求外層函數(shù)解析式,其具體步驟是:先令內(nèi)層函數(shù)g(x)=t,解出x=g-1(t),代入復(fù)合函數(shù)解析式,整理出關(guān)于t的函數(shù),最后再將t換成x即可得到所求的解析式
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知函數(shù)f(x-1)=x2-2x+2,則f(x)=
x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①y=2x與y=log2x互為反函數(shù),其圖象關(guān)于y=x對稱;
②函數(shù)y=f(x)滿足f(2+x)=f(2-x),則其圖象關(guān)于直線x=2對稱;
③已知函數(shù)f(x-1)=x2-2x+1.則f(5)=26;
④已知△ABC,P為平面ABC外任意一點,且PA⊥PB⊥PC,則點P在平面ABC內(nèi)的正投影是△ABC的垂心.
正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+1)為奇函數(shù),函數(shù)f(x-1)為偶函數(shù),且f(0)=2,則f(4)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•無錫二模)已知函數(shù)f(x+1)為奇函數(shù),函數(shù)f(x-1)為偶函數(shù),且f(0)=2,則f(4)=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+1)=2x-1,則f(5)=
8
8

查看答案和解析>>

同步練習(xí)冊答案