若集合A={x|x>1},集合B={x|x2<4},則集合A∩B=
 
考點:交集及其運算
專題:集合
分析:利用交集的性質和不等式的性質求解.
解答: 解:∵集合A={x|x>1},
集合B={x|x2<4}={x|-2<x<2},
∴集合A∩B={x|1<x<2}.
故答案為:{x|1<x<2}.
點評:本題考查交集的求法,是基礎題,解題時要認真審題,注意不等式性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)=
4x
4x+2
,
(1)求證:f(x)+f(1-x)=1;
(2)求和f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,tanA=
1
4
,tanB=
3
5
,AB的長為
17
,試求:
(1)內角C的大。
(2)最小邊的邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A={x|0≤x≤2},B={y|1≤y≤2},下列圖形中能表示以A為定義域,B為值域的函數(shù)的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m=(2
1
4
)
1
2
-(-9.6)0-(3
3
8
)
2
3
+(1.5)-2;n=log3
427
3
+lg25+lg4+7log72.求m+n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=3,AD=
3
,AA1=h,則異面直線BD與B1C1所成的角為(  )
A、30°B、60°
C、90°D、不能確定,與h有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:函數(shù)f(x)=lg(ax2-x+
1
16
a)的定義域為R;命題q:不等式3x-9x<a對一切正實數(shù)x均成立.
(Ⅰ)如果p是真命題,求實數(shù)a的取值范圍;
(Ⅱ)如果命題“p或q”為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x2cosx的導數(shù)為( 。
A、y′=x2cosx-2xsinx
B、y′=2xcosx+x2sinx
C、y′=2xcosx-x2sinx
D、y′=xcosx-x2sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-2x,g(x)=x2+m(m∈R)
(Ⅰ)對于函數(shù)y=f(x)中的任意實數(shù)x,在y=g(x)上總存在實數(shù)x0,使得g(x0)<f(x)成立,求實數(shù)m的取值范圍
(Ⅱ)設函數(shù)h(x)=af(x)-g(x),當a在區(qū)間[1,2]內變化時,
(1)求函數(shù)y=h′(x)x∈[0,ln2]的取值范圍;
(2)若函數(shù)y=h(x),x∈[0,3]有零點,求實數(shù)m的最大值.

查看答案和解析>>

同步練習冊答案