19.函數(shù)$f(x)=\sqrt{x-2}$的定義域是( 。
A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)

分析 根據(jù)函數(shù)f(x)的解析式,二次根式的被開(kāi)方數(shù)大于或等于0,求出解集即可.

解答 解:函數(shù)f(x)=$\sqrt{x-2}$,
∴x-2≥0,
解得x≥2;
∴f(x)的定義域是[2,+∞).
故選:D.

點(diǎn)評(píng) 本題考查了根據(jù)函數(shù)f(x)的解析式,求定義域的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知定義在R上的函數(shù)$f(x)=\frac{1}{2}({sinωx+acosωx})({a∈R\;,\;\;0<ω≤1})$
滿足:$f(x)=f({\frac{π}{3}-x})$,f(x-π)=f(x+π).
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)不等的實(shí)數(shù)x1,${x_2}∈({-\frac{π}{3}\;,\;\;\frac{5π}{3}})$,且$f({x_1})=f({x_2})=-\frac{1}{2}$,求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若角α=-4,則α的終邊在(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x3+bx2+cx-1在x=-2時(shí)取得極值,且在點(diǎn)(-1,f(-1))處的切線的斜率為-3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-1,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在區(qū)間[1,5]隨機(jī)地取一個(gè)數(shù)m,則方程m2x2+4y2=1表示焦點(diǎn)在y軸上的橢圓的概率是( 。
A.$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,過(guò)點(diǎn)F作傾斜角為30°的直線與雙曲線左右兩支各有一個(gè)交點(diǎn),過(guò)點(diǎn)F作傾斜角為60°的直線與雙曲線右支交于不同的兩點(diǎn),則該雙曲線離心率的取值范圍是( 。
A.(1,$\frac{2\sqrt{3}}{3}$)B.($\frac{2\sqrt{3}}{3}$,2)C.[$\frac{2\sqrt{3}}{3}$,2]D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.定義上凸函數(shù)如下:設(shè)f(x)為區(qū)間I上的函數(shù),若對(duì)任意的x1,x2∈I總有f($\frac{{x}_{1}+{x}_{2}}{2}$)≥$\frac{f({x}_{1})+f({x}_{2})}{2}$,則稱(chēng)f(x)為I上的上凸函數(shù),某同學(xué)查閱資料后發(fā)現(xiàn)了上凸函數(shù)的如下判定定理和性質(zhì)定理:
判定定理:f(x)為上凸函數(shù)的充要條件是f″(x)≤0,x∈I,其中f″(x)為f(x)的導(dǎo)函數(shù)f′(x)的導(dǎo)數(shù).
性質(zhì)定理:若函數(shù)f(x)為區(qū)間I上的上凸函數(shù),則對(duì)I內(nèi)任意的x1,x2,…,xn,都有$\frac{f({x}_{1})+f({x}_{2})+…+f({x}_{n})}{n}$≤f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$).
請(qǐng)問(wèn):在△ABC中,sinA+sinB+sinC的最大值為$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA⊥BC,E是棱PC的中點(diǎn),∠DAB=90°,AB∥CD,AD=CD=2AB=2.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)若二面角E-BD-P大于60°,求四棱錐P-ABCD體積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)等差數(shù)列{an}的公差d>0,前n項(xiàng)和為Sn,已知3$\sqrt{5}$是-a2與a9的等比中項(xiàng),S10=-20.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}|{a}_{n+1}|}$,求數(shù)列{bn}的前n項(xiàng)和Tn(n≥6).

查看答案和解析>>

同步練習(xí)冊(cè)答案