7.已知函數(shù)f(x)=x3+bx2+cx-1在x=-2時(shí)取得極值,且在點(diǎn)(-1,f(-1))處的切線的斜率為-3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-1,2]上的最大值與最小值.

分析 (1)根據(jù)函數(shù)f(x)在x=-2處有極值,且在x=-1處切線斜率為-3,列出方程組;
(2)利用導(dǎo)數(shù)求出函數(shù)的單調(diào)區(qū)間,即可求出函數(shù)的最大值與最小值;

解答 解:(1)f'(x)=3x2+2bx+c
依題意得$\left\{\begin{array}{l}{f′(-2)=12-4b+c=0}\\{f′(-1)=3-2b+c=-3}\end{array}\right.$  解得:$\left\{\begin{array}{l}{b=3}\\{c=0}\end{array}\right.$,
∴函數(shù)f(x)的解析式為f(x)=x3+3x2-1.
(2)由(1)知f'(x)=3x2+6x.令f'(x)=0,
解得x1=-2,x2=0
列表:

x-1(-1,0)0(0,2)2
f'(x)-+
f(x)1減函數(shù)-1增函數(shù)19
從上表可知,f(x)在區(qū)間[-1,2]上的最大值是19,最小值是-1.

點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,切線斜率以及函數(shù)的最值問題,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知p:x2-8x-20>0,q:[x-(1-m)][x-(1+m)]>0(m>0),若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知A,B分別為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)在x軸正半軸,y軸正半軸上的頂點(diǎn),原點(diǎn)O到直線AB的距離為$\frac{{2\sqrt{21}}}{7}$,且|AB|=$\sqrt{7}$.
(1)求橢圓C的離心率;
(2)直線l:y=kx+m(-1≤k≤2)與圓x2+y2=2相切,并與橢圓C交于M,N兩點(diǎn),若|MN|=$\frac{{12\sqrt{2}}}{7}$,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.假設(shè)小明訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到,小明離家的時(shí)間在早上7:00-8:00之間,則他在離開家之前能拿到報(bào)紙的概率( 。
A.$\frac{1}{3}$B.$\frac{1}{8}$C.$\frac{2}{3}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖畫的某幾何體的三視圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,則該幾何體的體積為( 。
A.48-πB.96-πC.48-2πD.96-2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)(1-i)(x+yi)=2,其中x,y是實(shí)數(shù),則x+yi的共軛復(fù)數(shù)在復(fù)平面對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)$f(x)=\sqrt{x-2}$的定義域是(  )
A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,則|$\frac{(-1+i)(1+i)}{{i}^{3}}$|=( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知關(guān)于x的不等式|ax-2|+a|x-1|≥2(a>0).
(1)當(dāng)a=1時(shí),求不等式的解集;
(2)若不等式的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案