【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個(gè)人組成的解密團(tuán)隊(duì)參加一項(xiàng)解密挑戰(zhàn)活動(dòng),規(guī)則是由密碼專(zhuān)家給出題目,然后由個(gè)人依次出場(chǎng)解密,每人限定時(shí)間是分鐘內(nèi),否則派下一個(gè)人.個(gè)人中只要有一人解密正確,則認(rèn)為該團(tuán)隊(duì)挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測(cè)試情況,抽取了甲次的測(cè)試記錄,繪制了如下的頻率分布直方圖.

1)若甲解密成功所需時(shí)間的中位數(shù)為,求的值,并求出甲在分鐘內(nèi)解密成功的頻率;

2)在“挑戰(zhàn)不可能”節(jié)目上由于來(lái)自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為,其中表示第個(gè)出場(chǎng)選手解密成功的概率,并且定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨(dú)立.

求該團(tuán)隊(duì)挑戰(zhàn)成功的概率;

該團(tuán)隊(duì)以從小到大的順序按排甲、乙、丙三個(gè)人上場(chǎng)解密,求團(tuán)隊(duì)挑戰(zhàn)成功所需派出的人員數(shù)目的分布列與數(shù)學(xué)期望.

【答案】1,,甲在分鐘內(nèi)解密成功的頻率;(2)①;②詳見(jiàn)解析,.

【解析】

1)根據(jù)中位數(shù)左右兩邊的矩形面積之和均為可求得、的值,并根據(jù)頻率分布直方圖求得甲在分鐘內(nèi)解密成功的頻率;

2)①由(1)得出,求出的值,由此得出該團(tuán)隊(duì)挑戰(zhàn)成功的概率為;

②由題意可得出隨機(jī)變量的可能取值有、、,利用獨(dú)立事件的概率乘法公式計(jì)算出隨機(jī)變量在不同取值下的概率,據(jù)此可得出隨機(jī)變量的分布列,結(jié)合期望公式可計(jì)算出的數(shù)學(xué)期望值.

1)甲解密成功所需時(shí)間的中位數(shù)為

,解得,

,解得

由頻率分布直方圖知,甲在分鐘內(nèi)解密成功的頻率是;

2)①由題意及(1)可知第一個(gè)出場(chǎng)選手解密成功的概率為

第二個(gè)出場(chǎng)選手解密成功的概率為,

第三個(gè)出場(chǎng)選手解密成功的概率為

所以該團(tuán)隊(duì)挑戰(zhàn)成功的概率為;

②由①可知按從小到大的順序的概率分別、、,

根據(jù)題意知的取值為、、,

,,

所以所需派出的人員數(shù)目的分布列為:

因此,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一旅游區(qū)有兩個(gè)新建項(xiàng)目.項(xiàng)目的一期投資額與利潤(rùn)近似滿(mǎn)足.項(xiàng)目的一期投資額與利潤(rùn)的關(guān)系如散點(diǎn)圖所示,其中,.一商家欲向這兩個(gè)項(xiàng)目一期隨機(jī)投資,其中投資項(xiàng)目不超過(guò)10(本題未注明金額單位的,單位均為百萬(wàn)元).投資、相互獨(dú)立.

1)用最小二乘法求的回歸直線(xiàn)方程;

2)商家投資項(xiàng)目的概率是0.4,投資項(xiàng)目的概率是0.6.設(shè)商家這次投資獲得的利潤(rùn)最大值為,利用(1)的結(jié)果,求.

附參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查“雙11”消費(fèi)活動(dòng)情況,某校統(tǒng)計(jì)小組分別走訪(fǎng)了、兩個(gè)小區(qū)各20戶(hù)家庭,他們當(dāng)日的消費(fèi)額按,,,,,分組,分別用頻率分布直方圖與莖葉圖統(tǒng)計(jì)如下(單位:元):

1)分別計(jì)算兩個(gè)小區(qū)這20戶(hù)家庭當(dāng)日消費(fèi)額在的頻率,并補(bǔ)全頻率分布直方圖;

2)分別從兩個(gè)小區(qū)隨機(jī)選取1戶(hù)家庭,求這兩戶(hù)家庭當(dāng)日消費(fèi)額在的戶(hù)數(shù)為1時(shí)的概率(頻率當(dāng)作概率使用);

3)運(yùn)用所學(xué)統(tǒng)計(jì)知識(shí)分析比較兩個(gè)小區(qū)的當(dāng)日網(wǎng)購(gòu)消費(fèi)水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)為點(diǎn)在平面上的正投影,則記.如圖,在棱長(zhǎng)為1的正方體中,記平面,平面,點(diǎn)是線(xiàn)段上一動(dòng)點(diǎn),.給出下列四個(gè)結(jié)論:

的重心;

;

③當(dāng)時(shí),平面;

④當(dāng)三棱錐的體積最大時(shí),三棱錐外接球的表面積為.

其中,所有正確結(jié)論的序號(hào)是________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,底面是平行四邊形,平面,,中點(diǎn),點(diǎn)在棱上移動(dòng).

(1)若,求證:;

(2)若,當(dāng)點(diǎn)中點(diǎn)時(shí),求與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為,t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

1)求直角坐標(biāo)系下直線(xiàn)與曲線(xiàn)的普通方程;

2)設(shè)直線(xiàn)與曲線(xiàn)交于點(diǎn)、(二者可重合),交軸于,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)與拋物線(xiàn)相交于,兩點(diǎn),且,若,軸距離的乘積為

1)求的方程;

2)設(shè)點(diǎn)為拋物線(xiàn)的焦點(diǎn),當(dāng)面積最小時(shí),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出以下幾個(gè)結(jié)論:

①命題,,則,

②命題“若,則”的逆否命題為:“若,則

③“命題為真”是“命題為真”的充分不必要條件

④若,則的最小值為4

其中正確結(jié)論的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,分別為內(nèi)角,的對(duì)邊,且滿(mǎn).

1)求的大。

2)再在①,②,③這三個(gè)條件中,選出兩個(gè)使唯一確定的條件補(bǔ)充在下面的問(wèn)題中,并解答問(wèn)題.________,________,求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案