分析 先化簡f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,再化簡f(x)<g(x),再分類討論:①當x∈[0,1)時,②當x∈[1,2)時③當x∈[2,3)時,從而得出f(x)<g(x)在0≤x≤k時的解集的長度,依題意即可求得k的值.
解答 解:f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,g(x)=x-1,
f(x)<g(x)⇒[x]x-[x]2<x-1即([x]-1)x<[x]2-1,
當x∈[0,1)時,[x]=0,上式可化為x>1,
∴x∈∅;
當x∈[1,2)時,[x]=1,上式可化為0>0,
∴x∈∅;
當x∈[2,3)時,[x]=2,[x]-1>0,上式可化為x<[x]+1=3,
∴當x∈[0,3)時,不等式f(x)<g(x)解集區(qū)間的長度為d=3-2=1;
同理可得,當x∈[3,4)時,不等式f(x)<g(x)解集區(qū)間的長度為d=4-2=2;
∵不等式f(x)<g(x)解集區(qū)間的長度為5,
∴k-2=5,
∴k=7.
故答案為:7.
點評 本題主要考查了抽象函數及其應用,同時考查了創(chuàng)新能力,以及分類討論的思想和轉化思想,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 36πcm2 | B. | 25πcm2 | C. | 16πcm2 | D. | 9πcm2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=x+1,g(x)=$\frac{x^2}{x}$-1 | B. | f(x)=|x|,g(x)=($\sqrt{x}$)2 | ||
C. | f(x)=2log2x,g(x)=log2x2 | D. | f(x)=x,g(x)=log22x |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ①②③④ | B. | ①④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com