已知數(shù)列{an}滿足a1=
1
4
,a2=
3
4
,an+1=2an-an-1(n≥2,n∈N*)數(shù)列{bn}滿足b1=
1
2
,3bn-bn-1=n(n≥2,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:數(shù)列{bn-an}為等比數(shù)列,并求出數(shù)列{bn}的通項(xiàng)公式.
考點(diǎn):數(shù)列遞推式,等比關(guān)系的確定
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)由an+1=2an-an-1(n≥2,n∈N*),可得an+1-an=an-an-1(n≥2,n∈N*),從而數(shù)列{an}是首項(xiàng)為a1=
1
4
,公差為d=a2-a1=
1
2
的等差數(shù)列,由此可求數(shù)列{an}的通項(xiàng)公式;
(2)由3bn-bn-1=n,得bn=
1
3
bn-1+
1
3
n,從而可以證明數(shù)列{bn-an}為等比數(shù)列,即可求出數(shù)列{bn}的通項(xiàng)公式.
解答: (1)解:由an+1=2an-an-1(n≥2,n∈N*),
可得an+1-an=an-an-1(n≥2,n∈N*).
∴數(shù)列{an}是首項(xiàng)為a1=
1
4
,公差為d=a2-a1=
1
2
的等差數(shù)列.
∴an=a1+(n-1)d=
1
2
n-
1
4
(n∈N*),
即an=
1
2
n-
1
4
(n∈N*).                                     …(6分)
(2)證明:由3bn-bn-1=n,得bn=
1
3
bn-1+
1
3
n(n≥2,n∈N*),
∴bn-an=
1
3
bn-1+
1
3
n-
1
2
n+
1
4
=
1
3
bn-1-
1
6
n+
1
4
=
1
3
(bn-1-
1
2
n+
3
4

=
1
3
[bn-1-
1
2
(n-1)+
1
4
]=
1
3
(bn-1-an-1).
又b1-a1=
1
4
≠0,∴bn-an≠0(n∈N*),得
bn-an
bn-1-an-1
=
1
3
(n≥2,n∈N*),
即數(shù)列{bn-an}是首項(xiàng)為b1-a1=
1
4
,公比為
1
3
的等比數(shù)列.
bn=
1
4
•(
1
3
)n-1+
n
2
-
1
4
…(12分)
點(diǎn)評:本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=-x3+3x-a在[0,2]上有兩個(gè)零點(diǎn),則常數(shù)a的取值范圍為( 。
A、0≤a<2
B、-2≤a≤2
C、-2<a<2
D、0≤a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,角A,B,C的對邊分別為a,b,c,已知點(diǎn)D是邊BC的中點(diǎn),且2
AD
BC
=a2-ac,則B的大小為( 。
A、45°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一名老師和兩名男生兩名女生站成一排照相,要求兩名女生必須站在一起且老師不站在兩端,則不同站法的種數(shù)為( 。
A、8B、12C、16D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋擲一枚骰子,得到偶數(shù)點(diǎn)的概率是( 。
A、
1
6
B、
1
4
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某大型企業(yè)人力資源部為了研究企業(yè)員工工作積極性和對待企業(yè)改革態(tài)度的關(guān)系,隨機(jī)抽取了180名員工進(jìn)行調(diào)查,在被調(diào)查員工中有100名工作積極,80名工作一般,120名積極支持企業(yè)改革,60名不太贊成企業(yè)改革,工作積極的員工里有80%積極支持企業(yè)改革.
(1)作出2×2列聯(lián)表
積極支持企業(yè)改革 不太贊成企業(yè)改革 合計(jì)
工作積極
工作一般
合計(jì)
(2)對于人力資源部的研究項(xiàng)目進(jìn)行分析,根據(jù)上述數(shù)據(jù)能否有99.9%的把握認(rèn)為工作積極性與對待企業(yè)改革態(tài)度有關(guān)?
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥K0 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
K0 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
cos(α-
π
2
)
sin(
2
+α)
•sin(α-2π)•cos(2π-α)
②cos2(-α)-
tan(360°+α)
sin(-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某教授為了研究數(shù)學(xué)成績與物理成績是否相關(guān),對鄭州市某中學(xué)高二(1)班66名學(xué)生的期末考試數(shù)學(xué)成績與物理成績的統(tǒng)計(jì)如右表,根據(jù)以上數(shù)據(jù),該教授能否得出:有85%的把握認(rèn)為數(shù)學(xué)成績與物理成績有關(guān)?
及格(人) 不及格(人) 合計(jì)
數(shù)學(xué) 60 6 66
物理 54 12 66
合計(jì) 114 18 132
參考數(shù)據(jù):
P(K2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n2,{bn}為等比數(shù)列,且a1=b1,b1(a2-a1)=b2
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)Cn=
anbn
4
,求數(shù)列{cn}前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案