【題目】在平面直角坐標(biāo)系中,點,直線.設(shè)圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線的方程;
(2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.
【答案】(1)或;(2).
【解析】
試題分析:(1)首先聯(lián)立兩直線方程求得圓心坐標(biāo),然后設(shè)出切線方程,利用點到直線的距離求得切線斜率,從而求得切線的方程;(2)首先根據(jù)題條件設(shè)出圓的方程與點的坐標(biāo),然后根據(jù)得到的軌跡方程,從而得出點應(yīng)該既在圓上又在圓上,且圓和圓有交點,進而確定不等關(guān)系式,求得的取值范圍.
試題解析:(1)由題設(shè),圓心是直線與直線的交點,
由,解得,于是切線的斜率必存在.
設(shè)過的圓的切線方程為,即,
由題意,,解得或,或.
故所求切線方程為,或,即,或.
(2)∵圓的圓心在直線上,
∴圓的方程為,
設(shè)點,由,得,
化簡,得,即,
∴點在以為圓心,2為半徑的圓上.
由題意,點在圓上,
∴圓和圓有公共點,則,
∴,即.
由,得;
由,得.
故圓心的橫坐標(biāo)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,平面直角坐標(biāo)系上的一個動點滿足.設(shè)動點的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)點是曲線上的任意一點,為圓的任意一條直徑,求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《選修4—4:坐標(biāo)系與參數(shù)方程》
已知直線l的參數(shù)方程為 (t為參數(shù)),若以直角坐標(biāo)系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-).
(1)求直線l的傾斜角和曲線的直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點,設(shè)點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,側(cè)棱,底面為直角梯形,其中,為中點.
(1)求證:;
(2)求異面直線與所成角的余弦值;
(3)線段上是否存在,使得它到平面的距離為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】總體由編號為01,02,…,19,20的20個個體組成.利用下面的隨機數(shù)表選取4個個體,選取方法從隨機數(shù)表的第1行第4列數(shù)由左到右由上到下開始讀取,則選出來的第4個個體的編號為( )
第1行 78 16 65 71 02 30 60 14 01 02 40 60 90 28 01 98
第2行 32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81
A.10B.01C.09D.06
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,解關(guān)于的不等式;
(2)若關(guān)于的不等式的解集是,求實數(shù)、的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點, ,點滿足,其中, ,且;圓的圓心在軸上,且與點的軌跡相切與點.
(1)求圓的方程;
(2)若點,點是圓上的任意一點,求的取值范圍;
(3)過點的兩條直線分別與圓交于、兩點,若直線、的斜率互為相反數(shù),求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com