設函數(shù),其中常數(shù)a>1,f(x)=
13
x3-(1+a)x2+4ax+24a
(Ⅰ)討論f(x)的單調性;
(Ⅱ)若當x≥0時,f(x)>0恒成立,求a的取值范圍.
分析:(1)先對函數(shù)進行求導,根據(jù)導函數(shù)大于0時原函數(shù)單調遞增,導函數(shù)小于0時原函數(shù)單調遞減可確定函數(shù)的單調性.
(2)先將問題轉化為求函數(shù)在x≥0時的最小值問題,再結合(1)中的單調性可確定f(x)在x=2a或x=0處取得最小值,求出最小值,即可得到a的范圍.
解答:解:(1)f'(x)=x2-2(1+a)x+4a=(x-2)(x-2a)
由a>1知,當x<2時,f'(x)>0,
故f(x)在區(qū)間(-∞,2)是增函數(shù);
當2<x<2a時,f'(x)<0,
故f(x)在區(qū)間(2,2a)是減函數(shù);
當x>2a時,f'(x)>0,
故f(x)在區(qū)間(2a,+∞)是增函數(shù).
綜上,當a>1時,f(x)在區(qū)間(-∞,2)和(2a,+∞)是增函數(shù),
在區(qū)間(2,2a)是減函數(shù).
(2)由(1)知,當x≥0時,f(x)在x=2a或x=0處取得最小值.
f(2a)=
1
3
(2a)3-(1+a)(2a)2+4a•2a+24a
=-
4
3
a3+4a2+24a
,f(0)=24a
由假設知
a>1
f(2a)>0
f(0)>0

a>1
-
4
3
a(a+3)(a-6)>0
24a>0.
解得1<a<6
故a的取值范圍是(1,6)
點評:本題考查導數(shù)與函數(shù)的綜合運用能力,涉及利用導數(shù)討論函數(shù)的單調性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2011-2012學年福建省龍巖一中上學期高二期中考試理科數(shù)學試卷 題型:解答題

設函數(shù),其中常數(shù)a>1
(1)討論f(x)的單調性;
(2)若當x≥0時,f(x)>0恒成立,求a的取值范圍.w.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河南省高三第一次模擬考試文科數(shù)學試卷(解析版) 題型:解答題

設函數(shù) ,其中常數(shù)a>1

(Ⅰ)討論f(x)的單調性;

(Ⅱ)若當x≥0時,f(x)>0恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:四川省2010-2011學年高三一診模擬(文科) 題型:解答題

(滿分12分)設函數(shù),其中常數(shù)a>1.

(Ⅰ)討論f(x)的單調性;

(Ⅱ)若當x≥0時, f(x)>0恒成立,求a的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆福建省上學期高二期中考試理科數(shù)學試卷 題型:解答題

設函數(shù),其中常數(shù)a>1

(1)討論f(x)的單調性;

(2)若當x≥0時,f(x)>0恒成立,求a的取值范圍.w.

 

查看答案和解析>>

同步練習冊答案