7.如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,且SA=AB=BC=2,AD=1.
(1)求四棱柱S-ABCD的體積;
(2)求點B到平面SCD的距離;
(3)求面SCD與面SAB所成二面角的余弦值.

分析 (1)先求出底面ABCD的面積,由四棱錐S-ABCD的體積VS-ABCD=$\frac{1}{3}$×S梯形ABCD×SA,能求出結(jié)果.
(2)利用等體積,求點B到平面SCD的距離;
(3)以A為原點,AD、AB、AS所在直線為x軸,y軸,z軸,建立空間直角坐標系,利用向量法能求出面SCD與面SAB所成二面角的余弦值.

解答 解:(1)∵在四棱錐S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,
側(cè)棱SA⊥底面ABCD,且SA=AB=BC=2,AD=1,
∴S梯形ABCD=$\frac{1}{2}×(1+2)×2$=3,
∴四棱錐S-ABCD的體積VS-ABCD=$\frac{1}{3}×3×2$=2.
(2)△SDC中,SD=DC=$\sqrt{5}$,SC=2$\sqrt{3}$,S△SDC=$\frac{1}{2}×2\sqrt{3}×\sqrt{12-\frac{5}{4}}$=$\frac{\sqrt{129}}{2}$,
設(shè)點B到平面SCD的距離為h,則$\frac{1}{3}×\frac{\sqrt{129}}{2}h$=$\frac{1}{3}×\frac{1}{2}×2×2×2$,
∴h=$\frac{8\sqrt{129}}{129}$;
(2)如圖,以A為原點,AD、AB、AS所在直線為x軸,y軸,z軸,建立空間直角坐標系,
A(0,0,0),B(0,2,0),C(2,2,0),D(1,0,0),S(0,0,2),
平面SAB的法向量$\overrightarrow{{n}_{1}}$=(1,0,0),
又$\overrightarrow{SC}$=(2,2,-2),$\overrightarrow{SD}$=(1,0,-2),
設(shè)平面SCD的法向量$\overrightarrow{{n}_{2}}$=(x,y,z),
則$\left\{\begin{array}{l}{2x+2y-2z=0}\\{x-2z=0}\end{array}\right.$,取x=2,得$\overrightarrow{{n}_{2}}$=(2,-1,1),
設(shè)面SCD與面SAB所成二面角的平面角為θ,
則cosθ=$\frac{2}{\sqrt{6}}$=$\frac{\sqrt{6}}{3}$.
∴面SCD與面SAB所成二面角的余弦值為$\frac{\sqrt{6}}{3}$.

點評 本題主要考查空間直線和直線的垂直判斷,點到平面距離的計算以及空間二面角的求解,要求熟練掌握相應(yīng)的判定定理以及,空間向量與二面角的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=2cos2x+2$\sqrt{3}$sinxcosx
(1)求f(x)的最小正周期及單調(diào)遞增區(qū)間.
(2)在△ABC中,a,b,c分別是A,B,C的對邊,若(a+2c)cosB=-bcosA成立,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.第一排有5個座位,安排4個老師坐下,其中老師A必須在老師B的左邊,共有60種不同的排法(結(jié)果用數(shù)字表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列敘述中正確命題的個數(shù)有( 。
(1)若a,b,c∈R,則“ax2+bx+c≥0”的充分條件是“b2-4ac≤0”
(2)若a,b,c∈R,則“ab2>cb2”的充要條件是“a>c”
(3)若x,y∈R,滿足ax<ay(0<a<1),則$\frac{1}{{x}^{2}+1}$>$\frac{1}{{y}^{2}+1}$
(4)若m>1,則mx2-2(m+1)x+m+3>0的解集為R.
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)命題p:函數(shù)f(x)=ln(x2+(m-3)x+1)的定義域為R;命題q:方程x2=mx-1有兩個不相等的正實根.若命題p或q為真命題,命題p且q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ln(1+x)+$\frac{m}{1+x}$(m∈R).
(1)若函數(shù)f(x)的圖象在x軸上方,求m的取值范圍;
(2)若對任意的正整數(shù)n都有(1+$\frac{1}{n}$)n-a≥e成立,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖為一半徑是4米的水輪,水輪圓心O距離水面1米,已知水輪每分鐘旋轉(zhuǎn)5圈,水輪上的點P到水面的距離y(米)與時間x(秒)滿足函數(shù)關(guān)系y=Asin(ωx+φ)+1,則( 。
A.$ω=\frac{π}{6},A=4$B.$ω=\frac{2π}{15},A=3$C.$ω=\frac{π}{6},A=5$D.$ω=\frac{2π}{15},A=4$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x+m|+|2x+1|.
(1)當(dāng)m=-1時,解不等式f(x)≤3;
(2)若m∈(-1,0],求函數(shù)f(x)=|x+m|+|2x+1|的圖象與直線y=3圍成的多邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.不等式lg(a2-x2)<2lg(2x+a)(a>0)的解集是(0,a).

查看答案和解析>>

同步練習(xí)冊答案