(1)已知兩個(gè)等比數(shù)列{an},{bn},滿(mǎn)足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若數(shù)列{an}唯一,a的值;

(2)是否存在兩個(gè)等比數(shù)列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不為0的等差數(shù)列?若存在,{an},{bn}的通項(xiàng)公式;若不存在,說(shuō)明理由.

 

【答案】

(1) a= (2) 不存在,理由見(jiàn)解析

【解析】

:(1)設(shè)等比數(shù)列{an}的公比為q,

b1=1+a,b2=2+aq,b3=3+aq2,

b1,b2,b3成等比數(shù)列,(2+aq)2=(1+a)(3+aq2),

aq2-4aq+3a-1=0,(*)

a>0得Δ=4a2+4a>0,故方程(*)有兩個(gè)不同的實(shí)數(shù)根,

再由{an}唯一,知方程(*)必有一根為0,q=0代入方程(*)a=.

(2)假設(shè)存在兩個(gè)等比數(shù)列{an},{bn}使b1-a1,b2-a2,b3-a3,b4-a4成公差不為0的等差數(shù)列,設(shè)等比數(shù)列{an}的公比為q1,等比數(shù)列{bn}的公比為q2,

b2-a2=b1q2-a1q1,

b3-a3=b1-a1,

b4-a4=b1-a1,

b1-a1,b2-a2,b3-a3,b4-a4成等差數(shù)列,

×q2-②得a1(q1-q2)(q1-1) 2=0,

a10q1=q2q1=1.

()當(dāng)q1=q2時(shí)由①②得b1=a1q1=q2=1,

這時(shí)(b2-a2)-(b1-a1)=0與公差不為0矛盾.

()當(dāng)q1=1時(shí),由①②得b1=0q2=1,

這時(shí)(b2-a2)-(b1-a1)=0與公差不為0矛盾.

綜上所述,不存在兩個(gè)等比數(shù)列{an}{bn}使b1-a1,b2-a2,b3-a3,b4-a4成公差不為0的等差數(shù)列.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù){an},a1=1,a4=8,在an與an+1兩項(xiàng)之間依次插入2n-1個(gè)正整數(shù),得到數(shù)列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…則數(shù)列{bn}的前2013項(xiàng)之和S2013=
2007050
2007050
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等比數(shù){an},a1=1,a4=8,在an與an+1兩項(xiàng)之間依次插入2n-1個(gè)正整數(shù),得到數(shù)列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…則數(shù)列{bn}的前2013項(xiàng)之和S2013=______(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省南京市高淳縣湖濱高級(jí)中學(xué)高二(上)9月月考數(shù)學(xué)試卷(解析版) 題型:填空題

已知等比數(shù){an},a1=1,a4=8,在an與an+1兩項(xiàng)之間依次插入2n-1個(gè)正整數(shù),得到數(shù)列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…則數(shù)列{bn}的前2013項(xiàng)之和S2013=    (用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州市高一(下)期末數(shù)學(xué)試卷(解析版) 題型:填空題

已知等比數(shù){an},a1=1,a4=8,在an與an+1兩項(xiàng)之間依次插入2n-1個(gè)正整數(shù),得到數(shù)列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…則數(shù)列{bn}的前2013項(xiàng)之和S2013=    (用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州中學(xué)高一(下)期末數(shù)學(xué)試卷(解析版) 題型:填空題

已知等比數(shù){an},a1=1,a4=8,在an與an+1兩項(xiàng)之間依次插入2n-1個(gè)正整數(shù),得到數(shù)列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…則數(shù)列{bn}的前2013項(xiàng)之和S2013=    (用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊(cè)答案