如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),M分別是BB1,CC1與AB的中點,
(1)求證:AE平面A1DF;
(2)求證:A1M⊥平面AED;
(3)正方體棱長為2,求三棱錐A1-DEF的體積.
證明:(1)∵E,F(xiàn)分別是BB1,CC1的中點
∴EFBC,EF=BC
又∵ADBC,AD=BC
∴EFAD,EF=AD
∴四邊形AEFD為平行四DF邊形,
∴AEDF
∵AE?平面A1DF,DF?平面A1DF
∴AE平面A1DF
(2)由正方體的幾何特征可得AD⊥平面ABB1A1,
又∵A1M?平面ABB1A1,
∴AD⊥A1M
在正方形ABB1A1中,E,M分別是BB1與AB的中點,
∴△AA1M≌△BAE
∴∠BAE=∠AA1M
∵∠BAE+∠AA1O=90°
∴AA1M+AA1O=90°
∴A1M⊥AE
∵AD∩AE=A,AD,AE?平面AED
∴A1M⊥平面AED;
(3)∵正方體棱長為2,
∴三棱錐A1-DEF的體積
VA1-DEF=VA1-ADE=VD-A1AE=
1
3
SA1AE•AD=
1
3
1
2
•2•2•2=
4
3

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點,且BF=DE=C1G=C1H=
1
3
AB

(1)證明:直線EH與FG共面;
(2)若正方體的棱長為3,求幾何體GHC1-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,E,F(xiàn)分別是A1B,A1C的中點,點D在B1C1上,A1D⊥B1C.求證:
(1)EF平面ABC;
(2)平面A1FD⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果兩個平面分別平行于第三個平面,那么這兩個平面的位置關系(  )
A.平行B.相交C.異面D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在正方體ABCD-A1B1C1D1
(1)求證:AC⊥BD1
(2)求異面直線AC與BC1所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在三棱柱ABC-A1B1C1中,△ABC為等邊三角形,側棱AA1⊥平面ABC,AB=2,AA1=2
3
,D、E分別為AA1、BC1的中點.
(Ⅰ)求證:DE⊥平面BB1C1C;
(Ⅱ)求三棱錐C-BC1D的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

P是平行四邊形ABCD所在平面外的一點,若P到四邊的距離都相等,則四邊形ABCD( 。
A.是正方形B.是長方形
C.有一個內(nèi)切圓D.有一個外接圓

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在長方體ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M為棱CC1上一點.
(1)若C1M=
3
2
,求異面直線A1M和C1D1所成角的正切值;
(2)是否存在這樣的點M使得BM⊥平面A1B1M?若存在,求出C1M的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在正方體ABCD-A1B1C1D1中,E是CC1的中點,F(xiàn)是AC,BD的交點.
求證:A1F⊥平面BED.

查看答案和解析>>

同步練習冊答案