轎車A | 轎車B | 轎車C | |
舒適型 | 100 | 150 | z |
標(biāo)準(zhǔn)型 | 300 | 450 | 600 |
分析 (Ⅰ)利用分層抽樣滿足每個個體被抽到的概率相等,列出方程求出n,再利用頻數(shù)等于頻率乘以樣本容量求出n的值,據(jù)總的轎車數(shù)量求出z的值.
(Ⅱ)先利用分層抽樣滿足每個個體被抽到的概率相等,求出抽取一個容量為5的樣本舒適型轎車的輛數(shù),利用列舉的方法求出至少有1輛舒適型轎車的基本事件,利用古典概型的概率公式求出概率.
(Ⅲ)利用平均數(shù)公式求出數(shù)據(jù)的平均數(shù),通過列舉得到該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的數(shù)據(jù),利用古典概型的概率公式求出概率.
解答 解:(Ⅰ)設(shè)該廠這個月共生產(chǎn)轎車n輛,
由題意得$\frac{50}{n}$=$\frac{10}{100+300}$,所以n=2 000.
則z=2 000-(100+300)-(150+450)-600=400.)
(Ⅱ)設(shè)所抽樣本中有a輛舒適型轎車,由題意$\frac{400}{1000}$=$\frac{a}{5}$,得a=2.
因此抽取的容量為5的樣本中,有2輛舒適型轎車,3輛標(biāo)準(zhǔn)型轎車.
用A1,A2表示2輛舒適型轎車,用B1,B2,B3表示3輛標(biāo)準(zhǔn)型轎車,用E表示事件“在該樣本中任取2輛,其中至少有1輛舒適型轎車”,則基本事件空間包含的基本事件有:
(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10個.
事件E包含的基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7個.
故P(E)=$\frac{7}{10}$,即所求概率為$\frac{7}{10}$.
(Ⅲ)樣本平均數(shù)$\overline{x}$=$\frac{1}{8}$×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.
設(shè)D表示事件“從樣本中任取一數(shù),該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5”,則基本事件空間中有8個基本事件,事件D包括的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0共6個,所以P(D)=$\frac{6}{8}$=$\frac{3}{4}$,
即所求概率為$\frac{3}{4}$.
點評 本題考查古典概型,考查用列舉法來得到事件數(shù),考查分層抽樣,是一個概率與統(tǒng)計的綜合題目,這種題目看起來比較麻煩,但是解題的原理并不復(fù)雜.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{3}{2}$,2$\sqrt{3}$) | B. | (2,2$\sqrt{3}$) | C. | (1,2) | D. | (1,2$\sqrt{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | ±1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [3,+∞) | B. | [2,3] | C. | (0,2]∪[3,+∞) | D. | (0,2] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com