12.已知極坐標(biāo)的極點(diǎn)與平面直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,且長度單位相同.曲線C的極坐標(biāo)方程為ρ=2(cosθ+sinθ).
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)直線l:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于點(diǎn)E,求$\frac{1}{|EA|}$+$\frac{1}{|EB|}$的值.

分析 (I)極坐標(biāo)方程ρ=2(cosθ+sinθ)兩邊同乘ρ,根據(jù)極坐標(biāo)與直角坐標(biāo)的對應(yīng)關(guān)系得出;
(II)把直線的參數(shù)方程代入曲線C的直角坐標(biāo)方程,利用根與系數(shù)的關(guān)系和參數(shù)的幾何意義計(jì)算.

解答 解:(I)∵ρ=2(cosθ+sinθ),∴ρ2=2ρcosθ+2ρsinθ,
∴曲線C的直角坐標(biāo)方程為x2+y2=2x+2y,即(x-1)2+(y-1)2=2.
(II)E(0,1),
把$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))代入(x-1)2+(y-1)2=2得:t2-$\sqrt{2}$t-1=0,
設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2,則t1+t2=$\sqrt{2}$,t1t2=-1.∴t1,t2異號(hào).
∴|t1|+|t2|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{6}$.
∴$\frac{1}{|EA|}$+$\frac{1}{|EB|}$=$\frac{1}{|{t}_{1}|}$+$\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}|+|{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\sqrt{6}$.

點(diǎn)評 本題考查了極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化,參數(shù)的幾何意義及應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若集合A={x|x=$\frac{n}{3}$,n∈Z},B={x|x=n±$\frac{1}{3}$,n∈Z},C={x|x=n±$\frac{2}{3}$,n∈Z},則下列結(jié)論中正確的是( 。
A.B≠CB.A?BC.A?B=CD.A?C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知在等差數(shù)列{an}中,a1=3,前n項(xiàng)和為Sn,等比數(shù)列{bn}各項(xiàng)均為正數(shù),b1=1,b2+S2=12,{bn}的公比q=$\frac{S_2}{b_2}$.
(1)求an與bn;
(2)求$\frac{1}{S_1}$+$\frac{1}{S_2}$+…+$\frac{1}{S_n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,已知矩形ABCD,AD=2,E為AB邊上的點(diǎn),現(xiàn)將△ADE沿DE翻折至△ADE,使得點(diǎn)A'在平面EBCD上的投影在CD上,且直線A'D與平面EBCD所成角為30°,則線段AE的長為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.用輾轉(zhuǎn)相除法求80和36的最大公約數(shù),并用更相減損術(shù)檢驗(yàn)所得結(jié)果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某高中學(xué)校共有學(xué)生1800名,各年級(jí)男女學(xué)生人數(shù)如表.已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二女生的概率是0.16.
高一年級(jí)高二年級(jí)高三年級(jí)
女生324x280
男生316312y
現(xiàn)用分層抽樣的方法,在全校抽取45名學(xué)生,則應(yīng)在高三抽取的學(xué)生人數(shù)為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,角A、B、C所對的邊長分別為a,b,c,若a,b,c成等比數(shù)列且c=2a,則cosB 等于( 。
A.$\frac{3}{4}$B.$\frac{\sqrt{2}}{4}$C.$\frac{1}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ex-ax+1,其中a為實(shí)常數(shù),e=2.71828…為自然對數(shù)的底數(shù).
(1)當(dāng)a=e時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有最小值,并設(shè)函數(shù)f(x)的最小值為g(a),求證:g(a)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題正確的是(  )
A.在△ABC中,角A,B,C的對邊分別是a,b,c,則a>b是cosA<cosB的充要條件
B.已知$p:\frac{1}{x+1}>0$,則$?p:\frac{1}{x+1}≤0$
C.命題p:對任意的x∈R,x2+x+1>0,則?p:對任意的x∈R,x2+x+1≤0
D.存在實(shí)數(shù)x∈R,使$sinx+cosx=\frac{π}{2}$成立

查看答案和解析>>

同步練習(xí)冊答案